Khaled Alghafli , Xiaogang Shi , William Sloan , Awad M. Ali
{"title":"Investigating the role of ENSO in groundwater temporal variability across Abu Dhabi Emirate, United Arab Emirates using machine learning algorithms","authors":"Khaled Alghafli , Xiaogang Shi , William Sloan , Awad M. Ali","doi":"10.1016/j.gsd.2024.101389","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate prediction of groundwater levels is crucial for managing groundwater resources efficiently. The complex aquifer heterogeneity and groundwater abstraction variation present challenges to have accurate groundwater level models over Abu Dhabi emirate, United Arab Emirates. In the present study, two data-driven models are employed, which are the Long Short-Term Memory (LSTM) and the Random Forest (RF) to develop a model for the prediction of monthly groundwater level in the Abu Dhabi Emirate. The incorporated data in the models are precipitation, terrestrial water storage, soil moisture, evapotranspiration, and the El Niño-Southern Oscillation (ENSO) 3.4 index. The groundwater monitoring wells data are obtained for 263 monitoring wells distributed over Abu Dhabi emirate for the period 2000–2023 in a monthly temporal scale. The models' performance was assessed using the Nash-Sutcliffe efficiency (NSE), root mean square error (RMSE) the coefficient of determination (R<sup>2</sup>) and Percent bias (PBIAS). An optimization technique was also applied to address the impact of the lags on enhancing the groundwater level model. The LSTM model outperformed the RF model during the testing period, achieving R<sup>2</sup> = 0.79, NSE = 0.70, RMSE = 0.38 m and PBIAS = 0.2% with a 3-month lag. The global sensitivity analysis was applied to understand the importance of each parameter and its influence on the models’ output. This study highlights the potential use of data-driven models for the prediction of groundwater level which could aid water managers to monitor the groundwater resources at a regional scale. The developed model can serve as an alternative approach for predicting groundwater level change over the Abu Dhabi Emirate.</div></div>","PeriodicalId":37879,"journal":{"name":"Groundwater for Sustainable Development","volume":"28 ","pages":"Article 101389"},"PeriodicalIF":4.9000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Groundwater for Sustainable Development","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352801X24003126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Accurate prediction of groundwater levels is crucial for managing groundwater resources efficiently. The complex aquifer heterogeneity and groundwater abstraction variation present challenges to have accurate groundwater level models over Abu Dhabi emirate, United Arab Emirates. In the present study, two data-driven models are employed, which are the Long Short-Term Memory (LSTM) and the Random Forest (RF) to develop a model for the prediction of monthly groundwater level in the Abu Dhabi Emirate. The incorporated data in the models are precipitation, terrestrial water storage, soil moisture, evapotranspiration, and the El Niño-Southern Oscillation (ENSO) 3.4 index. The groundwater monitoring wells data are obtained for 263 monitoring wells distributed over Abu Dhabi emirate for the period 2000–2023 in a monthly temporal scale. The models' performance was assessed using the Nash-Sutcliffe efficiency (NSE), root mean square error (RMSE) the coefficient of determination (R2) and Percent bias (PBIAS). An optimization technique was also applied to address the impact of the lags on enhancing the groundwater level model. The LSTM model outperformed the RF model during the testing period, achieving R2 = 0.79, NSE = 0.70, RMSE = 0.38 m and PBIAS = 0.2% with a 3-month lag. The global sensitivity analysis was applied to understand the importance of each parameter and its influence on the models’ output. This study highlights the potential use of data-driven models for the prediction of groundwater level which could aid water managers to monitor the groundwater resources at a regional scale. The developed model can serve as an alternative approach for predicting groundwater level change over the Abu Dhabi Emirate.
期刊介绍:
Groundwater for Sustainable Development is directed to different stakeholders and professionals, including government and non-governmental organizations, international funding agencies, universities, public water institutions, public health and other public/private sector professionals, and other relevant institutions. It is aimed at professionals, academics and students in the fields of disciplines such as: groundwater and its connection to surface hydrology and environment, soil sciences, engineering, ecology, microbiology, atmospheric sciences, analytical chemistry, hydro-engineering, water technology, environmental ethics, economics, public health, policy, as well as social sciences, legal disciplines, or any other area connected with water issues. The objectives of this journal are to facilitate: • The improvement of effective and sustainable management of water resources across the globe. • The improvement of human access to groundwater resources in adequate quantity and good quality. • The meeting of the increasing demand for drinking and irrigation water needed for food security to contribute to a social and economically sound human development. • The creation of a global inter- and multidisciplinary platform and forum to improve our understanding of groundwater resources and to advocate their effective and sustainable management and protection against contamination. • Interdisciplinary information exchange and to stimulate scientific research in the fields of groundwater related sciences and social and health sciences required to achieve the United Nations Millennium Development Goals for sustainable development.