Zenhom El-Said Salem , Nesma A. Arafa , Abdelaziz L. Abdeldayem , Youssef M. Youssef
{"title":"Machine learning-enhanced GALDIT modeling for the Nile Delta aquifer vulnerability assessment in the Mediterranean region","authors":"Zenhom El-Said Salem , Nesma A. Arafa , Abdelaziz L. Abdeldayem , Youssef M. Youssef","doi":"10.1016/j.gsd.2024.101403","DOIUrl":null,"url":null,"abstract":"<div><div>Mega-delta aquifers face increasing salinization risks from overexploitation and erratic climate change globally. This study integrates the GALDIT framework with machine learning (ML) models, namely Support Vector Machine (SVM), Generalized Linear Model (GLM), and eXtreme Gradient Boosting (XGBoost), to enhance delta aquifer vulnerability (DAV) assessment to seawater intrusion (SWI). The Nile Delta, the largest freshwater mega-delta aquifer, serves as a case study. Grid search hyperparameter optimization was applied to refine these models using the GALDIT factors (groundwater occurrence, aquifer hydraulic conductivity, groundwater height above sea level, distance from the shoreline, impact of existing seawater intrusion, and aquifer thickness) and adjust conditioned vulnerability index (CVI) based on Total Dissolved Salts (TDS) as input variables. Statistical metrics, including Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), Mean Squared Error (MSE), Coefficient of Determination (R<sup>2</sup>), Pearson Correlation Coefficient (r), Nash–Sutcliffe Efficiency (NSE), Root Mean Square Error to Standard Deviation of Observations (RSR), and Index of Scatter (IOS), show that the XGBoost model significantly outperforms SVM and GLM, with exceptional results: R<sup>2</sup> = 0.9622, RMSE = 0.0430, r = 0.9815, MAE = 0.0206, MSE = 0.0018, NSE = 0.9618, RSR = 0.0005, and IOS = 0.2935. The GALDIT<sub>XGBoost</sub> map identified previously undetected high-vulnerability areas west of Alexandria and localized pockets within southern Port Said along the Mediterranean coast. The moderate vulnerability zone expanded, especially in northern Ismailia, compared to the basic GALDIT. Piper diagrams confirmed SWI risks, with dominant Na-Cl and Ca-Mg-Cl facies indicating elevated Cl⁻ and SO₄<sup>2</sup>⁻ levels. A shift from HCO₃⁻ to Cl⁻ further validated salinization, while Ca-HCO₃ facies represented freshwater. The optimized XGBoost model offers a robust tool for managing mega-delta groundwater and assessing global delta vulnerabilities.</div></div>","PeriodicalId":37879,"journal":{"name":"Groundwater for Sustainable Development","volume":"28 ","pages":"Article 101403"},"PeriodicalIF":4.9000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Groundwater for Sustainable Development","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352801X24003266","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Mega-delta aquifers face increasing salinization risks from overexploitation and erratic climate change globally. This study integrates the GALDIT framework with machine learning (ML) models, namely Support Vector Machine (SVM), Generalized Linear Model (GLM), and eXtreme Gradient Boosting (XGBoost), to enhance delta aquifer vulnerability (DAV) assessment to seawater intrusion (SWI). The Nile Delta, the largest freshwater mega-delta aquifer, serves as a case study. Grid search hyperparameter optimization was applied to refine these models using the GALDIT factors (groundwater occurrence, aquifer hydraulic conductivity, groundwater height above sea level, distance from the shoreline, impact of existing seawater intrusion, and aquifer thickness) and adjust conditioned vulnerability index (CVI) based on Total Dissolved Salts (TDS) as input variables. Statistical metrics, including Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), Mean Squared Error (MSE), Coefficient of Determination (R2), Pearson Correlation Coefficient (r), Nash–Sutcliffe Efficiency (NSE), Root Mean Square Error to Standard Deviation of Observations (RSR), and Index of Scatter (IOS), show that the XGBoost model significantly outperforms SVM and GLM, with exceptional results: R2 = 0.9622, RMSE = 0.0430, r = 0.9815, MAE = 0.0206, MSE = 0.0018, NSE = 0.9618, RSR = 0.0005, and IOS = 0.2935. The GALDITXGBoost map identified previously undetected high-vulnerability areas west of Alexandria and localized pockets within southern Port Said along the Mediterranean coast. The moderate vulnerability zone expanded, especially in northern Ismailia, compared to the basic GALDIT. Piper diagrams confirmed SWI risks, with dominant Na-Cl and Ca-Mg-Cl facies indicating elevated Cl⁻ and SO₄2⁻ levels. A shift from HCO₃⁻ to Cl⁻ further validated salinization, while Ca-HCO₃ facies represented freshwater. The optimized XGBoost model offers a robust tool for managing mega-delta groundwater and assessing global delta vulnerabilities.
期刊介绍:
Groundwater for Sustainable Development is directed to different stakeholders and professionals, including government and non-governmental organizations, international funding agencies, universities, public water institutions, public health and other public/private sector professionals, and other relevant institutions. It is aimed at professionals, academics and students in the fields of disciplines such as: groundwater and its connection to surface hydrology and environment, soil sciences, engineering, ecology, microbiology, atmospheric sciences, analytical chemistry, hydro-engineering, water technology, environmental ethics, economics, public health, policy, as well as social sciences, legal disciplines, or any other area connected with water issues. The objectives of this journal are to facilitate: • The improvement of effective and sustainable management of water resources across the globe. • The improvement of human access to groundwater resources in adequate quantity and good quality. • The meeting of the increasing demand for drinking and irrigation water needed for food security to contribute to a social and economically sound human development. • The creation of a global inter- and multidisciplinary platform and forum to improve our understanding of groundwater resources and to advocate their effective and sustainable management and protection against contamination. • Interdisciplinary information exchange and to stimulate scientific research in the fields of groundwater related sciences and social and health sciences required to achieve the United Nations Millennium Development Goals for sustainable development.