Eon-ju Park , Chiho Kim , Jooyoung Lee , Shin-Woo Myeong , Hoseok Lee , Sungjun Heo , Song Jin , Minjeong Park , Oi Lun Li , Sung Mook Choi
{"title":"Design of precursors and pH factors for enhancing the performance of nickel-based catalysts for anion exchange membrane water electrolysis","authors":"Eon-ju Park , Chiho Kim , Jooyoung Lee , Shin-Woo Myeong , Hoseok Lee , Sungjun Heo , Song Jin , Minjeong Park , Oi Lun Li , Sung Mook Choi","doi":"10.1016/j.elecom.2024.107851","DOIUrl":null,"url":null,"abstract":"<div><div>In response to the escalating global energy crisis and climate change, green hydrogen is increasingly recognized as a clean energy solution. This study presents an innovative approach to enhance the performance of nickel-based catalysts for anion exchange membrane water electrolysis (AEMWE) through careful selection of precursor materials and pH optimization in the co-precipitation process. By optimizing precursor types and pH conditions during co-precipitation synthesis, we achieved high yields of Ni(OH)<sub>2</sub>, which were then thermally treated to form NiO. Notably, the nitrate-based NiO (N-NiO) exhibited superior catalytic activity and durability, attributed to its favorable microstructure and charge transfer capabilities. In addition, to verify universality of the N-NiO study and to assess the water electrolysis performance, we synthesized a binary compound, nickel–cobalt oxide (NCO), by incorporating Co, and evaluated its electrochemical performance in an AEMWE single-cell system. The nitrate-based NCO-based single-cell achieved a high current density of 1.38 A/cm<sup>2</sup> at 1.8 V<sub>cell</sub> in 1 M KOH at 50 °C, with a low degradation rate of 23 mV/kh at 1 A/cm<sup>2</sup> for 300 h. These findings provide valuable insights into the optimization of catalyst properties for hydrogen production and highlight significant commercial potential for hydrogen production and other electrochemical applications.</div></div>","PeriodicalId":304,"journal":{"name":"Electrochemistry Communications","volume":"170 ","pages":"Article 107851"},"PeriodicalIF":4.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochemistry Communications","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1388248124001942","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0
Abstract
In response to the escalating global energy crisis and climate change, green hydrogen is increasingly recognized as a clean energy solution. This study presents an innovative approach to enhance the performance of nickel-based catalysts for anion exchange membrane water electrolysis (AEMWE) through careful selection of precursor materials and pH optimization in the co-precipitation process. By optimizing precursor types and pH conditions during co-precipitation synthesis, we achieved high yields of Ni(OH)2, which were then thermally treated to form NiO. Notably, the nitrate-based NiO (N-NiO) exhibited superior catalytic activity and durability, attributed to its favorable microstructure and charge transfer capabilities. In addition, to verify universality of the N-NiO study and to assess the water electrolysis performance, we synthesized a binary compound, nickel–cobalt oxide (NCO), by incorporating Co, and evaluated its electrochemical performance in an AEMWE single-cell system. The nitrate-based NCO-based single-cell achieved a high current density of 1.38 A/cm2 at 1.8 Vcell in 1 M KOH at 50 °C, with a low degradation rate of 23 mV/kh at 1 A/cm2 for 300 h. These findings provide valuable insights into the optimization of catalyst properties for hydrogen production and highlight significant commercial potential for hydrogen production and other electrochemical applications.
期刊介绍:
Electrochemistry Communications is an open access journal providing fast dissemination of short communications, full communications and mini reviews covering the whole field of electrochemistry which merit urgent publication. Short communications are limited to a maximum of 20,000 characters (including spaces) while full communications and mini reviews are limited to 25,000 characters (including spaces). Supplementary information is permitted for full communications and mini reviews but not for short communications. We aim to be the fastest journal in electrochemistry for these types of papers.