Visualization of lithiated/delithiated particle distribution in Li4Ti5O12 electrode by ultralow-voltage scanning electron microscopy imaging

IF 4.7 3区 工程技术 Q2 ELECTROCHEMISTRY
Mitsunori Kitta
{"title":"Visualization of lithiated/delithiated particle distribution in Li4Ti5O12 electrode by ultralow-voltage scanning electron microscopy imaging","authors":"Mitsunori Kitta","doi":"10.1016/j.elecom.2024.107849","DOIUrl":null,"url":null,"abstract":"<div><div>Characterization of the spatial distribution of lithiated/delithiated particles in Li-ion battery electrodes would facilitate an understanding of the reactions taking place. Here, ultralow-voltage (&lt;1 kV) accelerated scanning electron microscopy (ULV-SEM) was used to visualize the distribution of lithiated/delithiated particles in the Li<sub>4</sub>Ti<sub>5</sub>O<sub>12</sub> electrode. A conductive additive-free electrode was prepared using commercially available Li<sub>4</sub>Ti<sub>5</sub>O<sub>12</sub> powder and partially lithiated using an electrochemical cell. The secondary electron (SE) image of the partially lithiated electrode acquired at an acceleration volage of 500 V shows a clear distribution of the lithiated/delithiated secondary particles. The contrast of the high-angle backscattered electron (HA-BSE) image of the corresponding voltage is different from that of the SE mode, providing heterogeneous physical information on the secondary particles in the electrode, such as inhomogeneous surface electronic conductive pathway of each particle. With its facile and high-throughput screening, ULV-SEM imaging is a promising method for characterizing LIB electrodes and clarifying the reactions occurring.</div></div>","PeriodicalId":304,"journal":{"name":"Electrochemistry Communications","volume":"170 ","pages":"Article 107849"},"PeriodicalIF":4.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochemistry Communications","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1388248124001929","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

Characterization of the spatial distribution of lithiated/delithiated particles in Li-ion battery electrodes would facilitate an understanding of the reactions taking place. Here, ultralow-voltage (<1 kV) accelerated scanning electron microscopy (ULV-SEM) was used to visualize the distribution of lithiated/delithiated particles in the Li4Ti5O12 electrode. A conductive additive-free electrode was prepared using commercially available Li4Ti5O12 powder and partially lithiated using an electrochemical cell. The secondary electron (SE) image of the partially lithiated electrode acquired at an acceleration volage of 500 V shows a clear distribution of the lithiated/delithiated secondary particles. The contrast of the high-angle backscattered electron (HA-BSE) image of the corresponding voltage is different from that of the SE mode, providing heterogeneous physical information on the secondary particles in the electrode, such as inhomogeneous surface electronic conductive pathway of each particle. With its facile and high-throughput screening, ULV-SEM imaging is a promising method for characterizing LIB electrodes and clarifying the reactions occurring.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Electrochemistry Communications
Electrochemistry Communications 工程技术-电化学
CiteScore
8.50
自引率
3.70%
发文量
160
审稿时长
1.2 months
期刊介绍: Electrochemistry Communications is an open access journal providing fast dissemination of short communications, full communications and mini reviews covering the whole field of electrochemistry which merit urgent publication. Short communications are limited to a maximum of 20,000 characters (including spaces) while full communications and mini reviews are limited to 25,000 characters (including spaces). Supplementary information is permitted for full communications and mini reviews but not for short communications. We aim to be the fastest journal in electrochemistry for these types of papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信