{"title":"Fluoride and nitrate contamination in groundwater of Naini Industrial Area, Uttar Pradesh: Assessing non-carcinogenic human health risk","authors":"Nighat Parveen , Soma Giri , Abhay Kumar Singh , Jayant Kumar Tripathi","doi":"10.1016/j.gsd.2024.101388","DOIUrl":null,"url":null,"abstract":"<div><div>Groundwater is the main source of drinking water globally; however, its quality has been deteriorated due to various geogenic and anthropogenic activities. The groundwater quality of Naini Industrial Area, Prayagraj was studied seasonally to evaluate the fluoride and nitrate contamination pertaining to human health risk assessment. The samples were collected from 60 locations in the pre-monsoon, monsoon, and post-monsoon season. The fluoride and nitrate were assessed with the help of Ion chromatography. The NO<sub>3</sub><sup>−</sup> concentration exceeded the Indian drinking water quality standards in 27% of the groundwater samples. The NO₃⁻ contamination is predominantly associated with agricultural practices, while F⁻ can be linked to natural geological sources. The non-carcinogenic human health risk assessment was quantified by calculating the Hazard Quotient (HQ) and Hazard Index (HI) were calculated as per USEPA methodology for male, female and child population. The findings indicate that the child population is particularly susceptible to health risks associated with the ingestion of F<sup>−</sup> and NO₃⁻ through the drinking water pathway. Across all the sampled sites, the Hazard Index (HI) values varied from 0.10 to 12.3 for males, 0.09 to 10.6 for females, and 0.16 to 19.7 for children suggesting substantial risk to the local populace at more than half of the locations which is largely related to nitrate contamination. Thus, the study suggests that groundwater at many locations is unsuitable for drinking without treatment pertaining to the probable health risk they pose to consumers advocating upgraded water management plan for the residents.</div></div>","PeriodicalId":37879,"journal":{"name":"Groundwater for Sustainable Development","volume":"28 ","pages":"Article 101388"},"PeriodicalIF":4.9000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Groundwater for Sustainable Development","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352801X24003114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Groundwater is the main source of drinking water globally; however, its quality has been deteriorated due to various geogenic and anthropogenic activities. The groundwater quality of Naini Industrial Area, Prayagraj was studied seasonally to evaluate the fluoride and nitrate contamination pertaining to human health risk assessment. The samples were collected from 60 locations in the pre-monsoon, monsoon, and post-monsoon season. The fluoride and nitrate were assessed with the help of Ion chromatography. The NO3− concentration exceeded the Indian drinking water quality standards in 27% of the groundwater samples. The NO₃⁻ contamination is predominantly associated with agricultural practices, while F⁻ can be linked to natural geological sources. The non-carcinogenic human health risk assessment was quantified by calculating the Hazard Quotient (HQ) and Hazard Index (HI) were calculated as per USEPA methodology for male, female and child population. The findings indicate that the child population is particularly susceptible to health risks associated with the ingestion of F− and NO₃⁻ through the drinking water pathway. Across all the sampled sites, the Hazard Index (HI) values varied from 0.10 to 12.3 for males, 0.09 to 10.6 for females, and 0.16 to 19.7 for children suggesting substantial risk to the local populace at more than half of the locations which is largely related to nitrate contamination. Thus, the study suggests that groundwater at many locations is unsuitable for drinking without treatment pertaining to the probable health risk they pose to consumers advocating upgraded water management plan for the residents.
期刊介绍:
Groundwater for Sustainable Development is directed to different stakeholders and professionals, including government and non-governmental organizations, international funding agencies, universities, public water institutions, public health and other public/private sector professionals, and other relevant institutions. It is aimed at professionals, academics and students in the fields of disciplines such as: groundwater and its connection to surface hydrology and environment, soil sciences, engineering, ecology, microbiology, atmospheric sciences, analytical chemistry, hydro-engineering, water technology, environmental ethics, economics, public health, policy, as well as social sciences, legal disciplines, or any other area connected with water issues. The objectives of this journal are to facilitate: • The improvement of effective and sustainable management of water resources across the globe. • The improvement of human access to groundwater resources in adequate quantity and good quality. • The meeting of the increasing demand for drinking and irrigation water needed for food security to contribute to a social and economically sound human development. • The creation of a global inter- and multidisciplinary platform and forum to improve our understanding of groundwater resources and to advocate their effective and sustainable management and protection against contamination. • Interdisciplinary information exchange and to stimulate scientific research in the fields of groundwater related sciences and social and health sciences required to achieve the United Nations Millennium Development Goals for sustainable development.