{"title":"China's carbon peak analysis and life-cycle greenhouse gas emission estimation under the plastics limit order","authors":"Yanpeng Cai , Huiquan Li , Ya Zhou , Jianwen Chu","doi":"10.1016/j.spc.2024.12.005","DOIUrl":null,"url":null,"abstract":"<div><div>Polyethylene terephthalate, polyethylene, and polypropylene plastics are widely used in China. Presently, detailed information on greenhouse gas emissions of polyethylene terephthalate, polyethylene, and polypropylene and the corresponding carbon peak is affected under the newly launched plastics limit order. Key paths and strategies for emissions reduction are not clear yet. In this research, an accounting model for greenhouse gas emissions was developed. Then, a scenario of plastics limit order was set to analyze characteristics of greenhouse gas emissions and carbon peak potential for polyethylene terephthalate, polyethylene, and polypropylene. Certain mitigation and carbon peak strategies were proposed. Results indicated that the main pathways of greenhouse gas were the manufacturing process of polyethylene terephthalate fibers, polyethylene films, and PP woven goods. Moreover, polyethylene terephthalate, polyethylene, and polypropylene would have a significant emission reduction (equivalent to the emissions of 26 new power plants (500 MW)) by 2030 under the prohibition scenario. Notably, although substitution scenarios could reduce waste, the reduction of greenhouse gas would not be obvious. Optimizing waste management has significant effects on emission reduction. The scenario of multiple measures would contribute significantly to realizing carbon reduction and peak (PET, PE, and PP reducing by 152.2, 92.2, and 21.5 Mt CO<sub>2</sub>e). The research results of this study would identify the key paths of greenhouse gas emissions and carbon peak potential under the plastics limit order.</div></div>","PeriodicalId":48619,"journal":{"name":"Sustainable Production and Consumption","volume":"53 ","pages":"Pages 190-202"},"PeriodicalIF":10.9000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Production and Consumption","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352550924003488","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL STUDIES","Score":null,"Total":0}
引用次数: 0
Abstract
Polyethylene terephthalate, polyethylene, and polypropylene plastics are widely used in China. Presently, detailed information on greenhouse gas emissions of polyethylene terephthalate, polyethylene, and polypropylene and the corresponding carbon peak is affected under the newly launched plastics limit order. Key paths and strategies for emissions reduction are not clear yet. In this research, an accounting model for greenhouse gas emissions was developed. Then, a scenario of plastics limit order was set to analyze characteristics of greenhouse gas emissions and carbon peak potential for polyethylene terephthalate, polyethylene, and polypropylene. Certain mitigation and carbon peak strategies were proposed. Results indicated that the main pathways of greenhouse gas were the manufacturing process of polyethylene terephthalate fibers, polyethylene films, and PP woven goods. Moreover, polyethylene terephthalate, polyethylene, and polypropylene would have a significant emission reduction (equivalent to the emissions of 26 new power plants (500 MW)) by 2030 under the prohibition scenario. Notably, although substitution scenarios could reduce waste, the reduction of greenhouse gas would not be obvious. Optimizing waste management has significant effects on emission reduction. The scenario of multiple measures would contribute significantly to realizing carbon reduction and peak (PET, PE, and PP reducing by 152.2, 92.2, and 21.5 Mt CO2e). The research results of this study would identify the key paths of greenhouse gas emissions and carbon peak potential under the plastics limit order.
期刊介绍:
Sustainable production and consumption refers to the production and utilization of goods and services in a way that benefits society, is economically viable, and has minimal environmental impact throughout its entire lifespan. Our journal is dedicated to publishing top-notch interdisciplinary research and practical studies in this emerging field. We take a distinctive approach by examining the interplay between technology, consumption patterns, and policy to identify sustainable solutions for both production and consumption systems.