HIF-1α downregulates the APP protein after oxygen and glucose deprivation in the APPswe/PSEN1 mouse model of Alzheimer's disease

IF 4.4 3区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Mario Villa-González , Marta García-Juan , Lara Ordóñez-Gutiérrez , María José Pérez-Álvarez , Francisco Wandosell Jurado
{"title":"HIF-1α downregulates the APP protein after oxygen and glucose deprivation in the APPswe/PSEN1 mouse model of Alzheimer's disease","authors":"Mario Villa-González ,&nbsp;Marta García-Juan ,&nbsp;Lara Ordóñez-Gutiérrez ,&nbsp;María José Pérez-Álvarez ,&nbsp;Francisco Wandosell Jurado","doi":"10.1016/j.neuint.2024.105923","DOIUrl":null,"url":null,"abstract":"<div><div>The mTORC1 and AMPK signalling pathways are considered key nodes regulating anabolism and catabolism, and they are altered in certain processes of neurodegeneration such as hypoxia associated with ischemic stroke or Alzheimer's disease. The lack of oxygen and/or glucose (oxygen and glucose deprivation-OGD) may affect the equilibrium of the mTORC1/AMPK pathways, perhaps aggravating neurodegeneration. The alteration of these pathways mediated by OGD may be reflected in other alterations, such as the activation of autophagy that could in turn modify the secretion/accumulation of amyloid-β, one of the two histopathological markers of Alzheimer's disease. Accordingly, we set out to analyze whether OGD enhances autophagy and its implication in neuronal amyloidosis. The data obtained reveal that OGD significantly dampens not only neuronal amyloid-β production but also, the total APP protein levels, without affecting BACE-1 levels. We show that this mechanism is independent of cellular proteolysis (autophagy or proteasome) and that it can be partially recovered by inhibiting HIF-1α activity.</div></div>","PeriodicalId":398,"journal":{"name":"Neurochemistry international","volume":"183 ","pages":"Article 105923"},"PeriodicalIF":4.4000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurochemistry international","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S019701862400250X","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The mTORC1 and AMPK signalling pathways are considered key nodes regulating anabolism and catabolism, and they are altered in certain processes of neurodegeneration such as hypoxia associated with ischemic stroke or Alzheimer's disease. The lack of oxygen and/or glucose (oxygen and glucose deprivation-OGD) may affect the equilibrium of the mTORC1/AMPK pathways, perhaps aggravating neurodegeneration. The alteration of these pathways mediated by OGD may be reflected in other alterations, such as the activation of autophagy that could in turn modify the secretion/accumulation of amyloid-β, one of the two histopathological markers of Alzheimer's disease. Accordingly, we set out to analyze whether OGD enhances autophagy and its implication in neuronal amyloidosis. The data obtained reveal that OGD significantly dampens not only neuronal amyloid-β production but also, the total APP protein levels, without affecting BACE-1 levels. We show that this mechanism is independent of cellular proteolysis (autophagy or proteasome) and that it can be partially recovered by inhibiting HIF-1α activity.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neurochemistry international
Neurochemistry international 医学-神经科学
CiteScore
8.40
自引率
2.40%
发文量
128
审稿时长
37 days
期刊介绍: Neurochemistry International is devoted to the rapid publication of outstanding original articles and timely reviews in neurochemistry. Manuscripts on a broad range of topics will be considered, including molecular and cellular neurochemistry, neuropharmacology and genetic aspects of CNS function, neuroimmunology, metabolism as well as the neurochemistry of neurological and psychiatric disorders of the CNS.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信