{"title":"Extremal problems in BMO and VMO involving the Garsia norm","authors":"Konstantin M. Dyakonov","doi":"10.1016/j.jfa.2025.110833","DOIUrl":null,"url":null,"abstract":"<div><div>Given an <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> function <em>f</em> on the unit circle <span><math><mi>T</mi></math></span>, we put<span><span><span><math><msub><mrow><mi>Φ</mi></mrow><mrow><mi>f</mi></mrow></msub><mo>(</mo><mi>z</mi><mo>)</mo><mo>:</mo><mo>=</mo><mi>P</mi><mo>(</mo><mo>|</mo><mi>f</mi><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo><mo>(</mo><mi>z</mi><mo>)</mo><mo>−</mo><mo>|</mo><mi>P</mi><mi>f</mi><mo>(</mo><mi>z</mi><mo>)</mo><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>,</mo><mspace></mspace><mi>z</mi><mo>∈</mo><mi>D</mi><mo>,</mo></math></span></span></span> where <span><math><mi>D</mi></math></span> is the open unit disk and <span><math><mi>P</mi></math></span> is the Poisson integral operator. The Garsia norm <span><math><msub><mrow><mo>‖</mo><mi>f</mi><mo>‖</mo></mrow><mrow><mi>G</mi></mrow></msub></math></span> is then defined as <span><math><msub><mrow><mi>sup</mi></mrow><mrow><mi>z</mi><mo>∈</mo><mi>D</mi></mrow></msub><mo></mo><msub><mrow><mi>Φ</mi></mrow><mrow><mi>f</mi></mrow></msub><msup><mrow><mo>(</mo><mi>z</mi><mo>)</mo></mrow><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msup></math></span>, and the space BMO is formed by the functions <span><math><mi>f</mi><mo>∈</mo><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> with <span><math><msub><mrow><mo>‖</mo><mi>f</mi><mo>‖</mo></mrow><mrow><mi>G</mi></mrow></msub><mo><</mo><mo>∞</mo></math></span>. If <span><math><msubsup><mrow><mo>‖</mo><mi>f</mi><mo>‖</mo></mrow><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msubsup><mo>=</mo><msub><mrow><mi>Φ</mi></mrow><mrow><mi>f</mi></mrow></msub><mo>(</mo><msub><mrow><mi>z</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>)</mo></math></span> for some point <span><math><msub><mrow><mi>z</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>∈</mo><mi>D</mi></math></span>, then <em>f</em> is said to be a norm-attaining BMO function, written as <span><math><mi>f</mi><mo>∈</mo><msub><mrow><mi>BMO</mi></mrow><mrow><mi>na</mi></mrow></msub></math></span>. Note that <span><math><msub><mrow><mi>BMO</mi></mrow><mrow><mi>na</mi></mrow></msub></math></span> contains VMO, the space of functions with vanishing mean oscillation. We study, first, the functions <em>f</em> in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup></math></span> (as well as in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup><mo>∩</mo><msub><mrow><mi>BMO</mi></mrow><mrow><mi>na</mi></mrow></msub></math></span>) with the property that <span><math><msub><mrow><mo>‖</mo><mi>f</mi><mo>‖</mo></mrow><mrow><mi>G</mi></mrow></msub><mo>=</mo><msub><mrow><mo>‖</mo><mi>f</mi><mo>‖</mo></mrow><mrow><mo>∞</mo></mrow></msub></math></span>. The analytic case, where <span><math><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup></math></span> gets replaced by <span><math><msup><mrow><mi>H</mi></mrow><mrow><mo>∞</mo></mrow></msup></math></span>, is discussed in more detail. Secondly, we prove that every function <span><math><mi>f</mi><mo>∈</mo><msub><mrow><mi>BMO</mi></mrow><mrow><mi>na</mi></mrow></msub></math></span> with <span><math><msub><mrow><mo>‖</mo><mi>f</mi><mo>‖</mo></mrow><mrow><mi>G</mi></mrow></msub><mo>=</mo><mn>1</mn></math></span> is an extreme point of <span><math><mrow><mi>ball</mi></mrow><mspace></mspace><mo>(</mo><mrow><mi>BMO</mi></mrow><mo>)</mo></math></span>, the unit ball of BMO with respect to the Garsia norm. This implies that the extreme points of <span><math><mrow><mi>ball</mi></mrow><mspace></mspace><mo>(</mo><mrow><mi>VMO</mi></mrow><mo>)</mo></math></span> are precisely the unit-norm VMO functions. As another consequence, we arrive at an amusing ‘‘geometric” characterization of inner functions.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"288 7","pages":"Article 110833"},"PeriodicalIF":1.7000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123625000151","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Given an function f on the unit circle , we put where is the open unit disk and is the Poisson integral operator. The Garsia norm is then defined as , and the space BMO is formed by the functions with . If for some point , then f is said to be a norm-attaining BMO function, written as . Note that contains VMO, the space of functions with vanishing mean oscillation. We study, first, the functions f in (as well as in ) with the property that . The analytic case, where gets replaced by , is discussed in more detail. Secondly, we prove that every function with is an extreme point of , the unit ball of BMO with respect to the Garsia norm. This implies that the extreme points of are precisely the unit-norm VMO functions. As another consequence, we arrive at an amusing ‘‘geometric” characterization of inner functions.
期刊介绍:
The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published.
Research Areas Include:
• Significant applications of functional analysis, including those to other areas of mathematics
• New developments in functional analysis
• Contributions to important problems in and challenges to functional analysis