{"title":"Structure preservation via the Wasserstein distance","authors":"Daniel Bartl , Shahar Mendelson","doi":"10.1016/j.jfa.2024.110810","DOIUrl":null,"url":null,"abstract":"<div><div>We show that under minimal assumptions on a random vector <span><math><mi>X</mi><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span> and with high probability, given <em>m</em> independent copies of <em>X</em>, the coordinate distribution of each vector <span><math><msubsup><mrow><mo>(</mo><mo>〈</mo><msub><mrow><mi>X</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>,</mo><mi>θ</mi><mo>〉</mo><mo>)</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>m</mi></mrow></msubsup></math></span> is dictated by the distribution of the true marginal <span><math><mo>〈</mo><mi>X</mi><mo>,</mo><mi>θ</mi><mo>〉</mo></math></span>. Specifically, we show that with high probability,<span><span><span><math><munder><mi>sup</mi><mrow><mi>θ</mi><mo>∈</mo><msup><mrow><mi>S</mi></mrow><mrow><mi>d</mi><mo>−</mo><mn>1</mn></mrow></msup></mrow></munder><mo></mo><msup><mrow><mo>(</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>m</mi></mrow></mfrac><munderover><mo>∑</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>m</mi></mrow></munderover><msup><mrow><mo>|</mo><msup><mrow><mo>〈</mo><msub><mrow><mi>X</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>,</mo><mi>θ</mi><mo>〉</mo></mrow><mrow><mo>♯</mo></mrow></msup><mo>−</mo><msubsup><mrow><mi>λ</mi></mrow><mrow><mi>i</mi></mrow><mrow><mi>θ</mi></mrow></msubsup><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msup><mo>≤</mo><mi>c</mi><msup><mrow><mo>(</mo><mfrac><mrow><mi>d</mi></mrow><mrow><mi>m</mi></mrow></mfrac><mo>)</mo></mrow><mrow><mn>1</mn><mo>/</mo><mn>4</mn></mrow></msup><mo>,</mo></math></span></span></span> where <span><math><msubsup><mrow><mi>λ</mi></mrow><mrow><mi>i</mi></mrow><mrow><mi>θ</mi></mrow></msubsup><mo>=</mo><mi>m</mi><msub><mrow><mo>∫</mo></mrow><mrow><mo>(</mo><mfrac><mrow><mi>i</mi><mo>−</mo><mn>1</mn></mrow><mrow><mi>m</mi></mrow></mfrac><mo>,</mo><mfrac><mrow><mi>i</mi></mrow><mrow><mi>m</mi></mrow></mfrac><mo>]</mo></mrow></msub><msubsup><mrow><mi>F</mi></mrow><mrow><mo>〈</mo><mi>X</mi><mo>,</mo><mi>θ</mi><mo>〉</mo></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msubsup><mo>(</mo><mi>u</mi><mo>)</mo><mspace></mspace><mi>d</mi><mi>u</mi></math></span> and <span><math><msup><mrow><mi>a</mi></mrow><mrow><mo>♯</mo></mrow></msup></math></span> denotes the monotone non-decreasing rearrangement of <em>a</em>. Moreover, this estimate is optimal.</div><div>The proof follows from a sharp estimate on the worst Wasserstein distance between a marginal of <em>X</em> and its empirical counterpart, <span><math><mfrac><mrow><mn>1</mn></mrow><mrow><mi>m</mi></mrow></mfrac><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>m</mi></mrow></msubsup><msub><mrow><mi>δ</mi></mrow><mrow><mo>〈</mo><msub><mrow><mi>X</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>,</mo><mi>θ</mi><mo>〉</mo></mrow></msub></math></span>.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"288 7","pages":"Article 110810"},"PeriodicalIF":1.7000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123624004981","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We show that under minimal assumptions on a random vector and with high probability, given m independent copies of X, the coordinate distribution of each vector is dictated by the distribution of the true marginal . Specifically, we show that with high probability, where and denotes the monotone non-decreasing rearrangement of a. Moreover, this estimate is optimal.
The proof follows from a sharp estimate on the worst Wasserstein distance between a marginal of X and its empirical counterpart, .
期刊介绍:
The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published.
Research Areas Include:
• Significant applications of functional analysis, including those to other areas of mathematics
• New developments in functional analysis
• Contributions to important problems in and challenges to functional analysis