Structure preservation via the Wasserstein distance

IF 1.7 2区 数学 Q1 MATHEMATICS
Daniel Bartl , Shahar Mendelson
{"title":"Structure preservation via the Wasserstein distance","authors":"Daniel Bartl ,&nbsp;Shahar Mendelson","doi":"10.1016/j.jfa.2024.110810","DOIUrl":null,"url":null,"abstract":"<div><div>We show that under minimal assumptions on a random vector <span><math><mi>X</mi><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span> and with high probability, given <em>m</em> independent copies of <em>X</em>, the coordinate distribution of each vector <span><math><msubsup><mrow><mo>(</mo><mo>〈</mo><msub><mrow><mi>X</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>,</mo><mi>θ</mi><mo>〉</mo><mo>)</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>m</mi></mrow></msubsup></math></span> is dictated by the distribution of the true marginal <span><math><mo>〈</mo><mi>X</mi><mo>,</mo><mi>θ</mi><mo>〉</mo></math></span>. Specifically, we show that with high probability,<span><span><span><math><munder><mi>sup</mi><mrow><mi>θ</mi><mo>∈</mo><msup><mrow><mi>S</mi></mrow><mrow><mi>d</mi><mo>−</mo><mn>1</mn></mrow></msup></mrow></munder><mo>⁡</mo><msup><mrow><mo>(</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>m</mi></mrow></mfrac><munderover><mo>∑</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>m</mi></mrow></munderover><msup><mrow><mo>|</mo><msup><mrow><mo>〈</mo><msub><mrow><mi>X</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>,</mo><mi>θ</mi><mo>〉</mo></mrow><mrow><mo>♯</mo></mrow></msup><mo>−</mo><msubsup><mrow><mi>λ</mi></mrow><mrow><mi>i</mi></mrow><mrow><mi>θ</mi></mrow></msubsup><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msup><mo>≤</mo><mi>c</mi><msup><mrow><mo>(</mo><mfrac><mrow><mi>d</mi></mrow><mrow><mi>m</mi></mrow></mfrac><mo>)</mo></mrow><mrow><mn>1</mn><mo>/</mo><mn>4</mn></mrow></msup><mo>,</mo></math></span></span></span> where <span><math><msubsup><mrow><mi>λ</mi></mrow><mrow><mi>i</mi></mrow><mrow><mi>θ</mi></mrow></msubsup><mo>=</mo><mi>m</mi><msub><mrow><mo>∫</mo></mrow><mrow><mo>(</mo><mfrac><mrow><mi>i</mi><mo>−</mo><mn>1</mn></mrow><mrow><mi>m</mi></mrow></mfrac><mo>,</mo><mfrac><mrow><mi>i</mi></mrow><mrow><mi>m</mi></mrow></mfrac><mo>]</mo></mrow></msub><msubsup><mrow><mi>F</mi></mrow><mrow><mo>〈</mo><mi>X</mi><mo>,</mo><mi>θ</mi><mo>〉</mo></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msubsup><mo>(</mo><mi>u</mi><mo>)</mo><mspace></mspace><mi>d</mi><mi>u</mi></math></span> and <span><math><msup><mrow><mi>a</mi></mrow><mrow><mo>♯</mo></mrow></msup></math></span> denotes the monotone non-decreasing rearrangement of <em>a</em>. Moreover, this estimate is optimal.</div><div>The proof follows from a sharp estimate on the worst Wasserstein distance between a marginal of <em>X</em> and its empirical counterpart, <span><math><mfrac><mrow><mn>1</mn></mrow><mrow><mi>m</mi></mrow></mfrac><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>m</mi></mrow></msubsup><msub><mrow><mi>δ</mi></mrow><mrow><mo>〈</mo><msub><mrow><mi>X</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>,</mo><mi>θ</mi><mo>〉</mo></mrow></msub></math></span>.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"288 7","pages":"Article 110810"},"PeriodicalIF":1.7000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123624004981","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We show that under minimal assumptions on a random vector XRd and with high probability, given m independent copies of X, the coordinate distribution of each vector (Xi,θ)i=1m is dictated by the distribution of the true marginal X,θ. Specifically, we show that with high probability,supθSd1(1mi=1m|Xi,θλiθ|2)1/2c(dm)1/4, where λiθ=m(i1m,im]FX,θ1(u)du and a denotes the monotone non-decreasing rearrangement of a. Moreover, this estimate is optimal.
The proof follows from a sharp estimate on the worst Wasserstein distance between a marginal of X and its empirical counterpart, 1mi=1mδXi,θ.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.20
自引率
5.90%
发文量
271
审稿时长
7.5 months
期刊介绍: The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published. Research Areas Include: • Significant applications of functional analysis, including those to other areas of mathematics • New developments in functional analysis • Contributions to important problems in and challenges to functional analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信