Non-existence and multiplicity of positive solutions for Choquard equations with critical combined nonlinearities

IF 1.7 2区 数学 Q1 MATHEMATICS
Shiwang Ma
{"title":"Non-existence and multiplicity of positive solutions for Choquard equations with critical combined nonlinearities","authors":"Shiwang Ma","doi":"10.1016/j.jfa.2025.110826","DOIUrl":null,"url":null,"abstract":"<div><div>We study the non-existence and multiplicity of positive solutions of the nonlinear Choquard type equation<span><span><span>(<em>P</em><sub><em>ε</em></sub>)</span><span><math><mo>−</mo><mi>Δ</mi><mi>u</mi><mo>+</mo><mi>ε</mi><mi>u</mi><mo>=</mo><mo>(</mo><msub><mrow><mi>I</mi></mrow><mrow><mi>α</mi></mrow></msub><mo>⁎</mo><mo>|</mo><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>p</mi></mrow></msup><mo>)</mo><mo>|</mo><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>p</mi><mo>−</mo><mn>2</mn></mrow></msup><mi>u</mi><mo>+</mo><mo>|</mo><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>q</mi><mo>−</mo><mn>2</mn></mrow></msup><mi>u</mi><mo>,</mo><mspace></mspace><mrow><mi>in</mi></mrow><mspace></mspace><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>,</mo></math></span></span></span> where <span><math><mi>N</mi><mo>≥</mo><mn>3</mn></math></span> is an integer, <span><math><mi>p</mi><mo>∈</mo><mo>(</mo><mfrac><mrow><mi>N</mi><mo>+</mo><mi>α</mi></mrow><mrow><mi>N</mi></mrow></mfrac><mo>,</mo><mfrac><mrow><mi>N</mi><mo>+</mo><mi>α</mi></mrow><mrow><mi>N</mi><mo>−</mo><mn>2</mn></mrow></mfrac><mo>]</mo></math></span>, <span><math><mi>q</mi><mo>∈</mo><mo>(</mo><mn>2</mn><mo>,</mo><mfrac><mrow><mn>2</mn><mi>N</mi></mrow><mrow><mi>N</mi><mo>−</mo><mn>2</mn></mrow></mfrac><mo>]</mo></math></span>, <span><math><msub><mrow><mi>I</mi></mrow><mrow><mi>α</mi></mrow></msub></math></span> is the Riesz potential of order <span><math><mi>α</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mi>N</mi><mo>)</mo></math></span> and <span><math><mi>ε</mi><mo>&gt;</mo><mn>0</mn></math></span> is a parameter. We fix one of <span><math><mi>p</mi><mo>,</mo><mi>q</mi></math></span> as a critical exponent (in the sense of Hardy-Littlewood-Sobolev and Sobolev inequalities) and view the others in <span><math><mi>p</mi><mo>,</mo><mi>q</mi><mo>,</mo><mi>ε</mi><mo>,</mo><mi>α</mi></math></span> as parameters, we find regions in the <span><math><mo>(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>,</mo><mi>α</mi><mo>,</mo><mi>ε</mi><mo>)</mo></math></span>-parameter space, such that the corresponding equation has no positive ground state or admits multiple positive solutions. This is a counterpart of the Brezis-Nirenberg Conjecture (Brezis and Nirenberg, 1983 <span><span>[7]</span></span>) for nonlocal elliptic equation in the whole space. Particularly, some threshold results for the existence of ground states and some conditions which insure two positive solutions are obtained. These results are quite different in nature from the corresponding local equation with combined powers nonlinearity and reveal the special influence of the nonlocal term. To the best of our knowledge, the only two papers concerning the multiplicity of positive solutions of elliptic equations with critical growth nonlinearity are given by Atkinson and Peletier (1986) <span><span>[5]</span></span> for elliptic equation on a ball and Wei and Wu (2023) <span><span>[40]</span></span> for elliptic equation with a combined powers nonlinearity in the whole space. The ODE technique is main ingredient in the proofs of the above mentioned papers, however, ODE technique does not work any more in our model equation due to the presence of the nonlocal term.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"288 7","pages":"Article 110826"},"PeriodicalIF":1.7000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123625000084","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We study the non-existence and multiplicity of positive solutions of the nonlinear Choquard type equation(Pε)Δu+εu=(Iα|u|p)|u|p2u+|u|q2u,inRN, where N3 is an integer, p(N+αN,N+αN2], q(2,2NN2], Iα is the Riesz potential of order α(0,N) and ε>0 is a parameter. We fix one of p,q as a critical exponent (in the sense of Hardy-Littlewood-Sobolev and Sobolev inequalities) and view the others in p,q,ε,α as parameters, we find regions in the (p,q,α,ε)-parameter space, such that the corresponding equation has no positive ground state or admits multiple positive solutions. This is a counterpart of the Brezis-Nirenberg Conjecture (Brezis and Nirenberg, 1983 [7]) for nonlocal elliptic equation in the whole space. Particularly, some threshold results for the existence of ground states and some conditions which insure two positive solutions are obtained. These results are quite different in nature from the corresponding local equation with combined powers nonlinearity and reveal the special influence of the nonlocal term. To the best of our knowledge, the only two papers concerning the multiplicity of positive solutions of elliptic equations with critical growth nonlinearity are given by Atkinson and Peletier (1986) [5] for elliptic equation on a ball and Wei and Wu (2023) [40] for elliptic equation with a combined powers nonlinearity in the whole space. The ODE technique is main ingredient in the proofs of the above mentioned papers, however, ODE technique does not work any more in our model equation due to the presence of the nonlocal term.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.20
自引率
5.90%
发文量
271
审稿时长
7.5 months
期刊介绍: The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published. Research Areas Include: • Significant applications of functional analysis, including those to other areas of mathematics • New developments in functional analysis • Contributions to important problems in and challenges to functional analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信