Filippo Riva , Giovanni Scilla , Francesco Solombrino
{"title":"Inertial Balanced Viscosity (IBV) solutions to infinite-dimensional rate-independent systems","authors":"Filippo Riva , Giovanni Scilla , Francesco Solombrino","doi":"10.1016/j.jfa.2025.110830","DOIUrl":null,"url":null,"abstract":"<div><div>A suitable notion of weak solution to infinite-dimensional rate-independent systems, called Inertial Balanced Viscosity (IBV) solution, is introduced. The key feature of such notion is that the energy dissipated at jump discontinuities takes both into account inertial and viscous effects. Under a general set of assumptions it is shown that IBV solutions arise as vanishing inertia and viscosity limits of second order dynamic evolutions as well as of the corresponding time-incremental approximations. Relevant examples coming from applications, such as Allen-Cahn type evolutions and Kelvin-Voigt models in linearized elasticity, are considered.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"288 7","pages":"Article 110830"},"PeriodicalIF":1.7000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123625000126","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
A suitable notion of weak solution to infinite-dimensional rate-independent systems, called Inertial Balanced Viscosity (IBV) solution, is introduced. The key feature of such notion is that the energy dissipated at jump discontinuities takes both into account inertial and viscous effects. Under a general set of assumptions it is shown that IBV solutions arise as vanishing inertia and viscosity limits of second order dynamic evolutions as well as of the corresponding time-incremental approximations. Relevant examples coming from applications, such as Allen-Cahn type evolutions and Kelvin-Voigt models in linearized elasticity, are considered.
期刊介绍:
The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published.
Research Areas Include:
• Significant applications of functional analysis, including those to other areas of mathematics
• New developments in functional analysis
• Contributions to important problems in and challenges to functional analysis