Polymer gels for solar-driven interfacial evaporation

Ningning Ma, Ning’er Xie, Naifang Zhang, Xiangjiu Guan
{"title":"Polymer gels for solar-driven interfacial evaporation","authors":"Ningning Ma,&nbsp;Ning’er Xie,&nbsp;Naifang Zhang,&nbsp;Xiangjiu Guan","doi":"10.1016/j.nxmate.2024.100432","DOIUrl":null,"url":null,"abstract":"<div><div>Solar-driven interfacial evaporation (SDIE), with merits of high evaporation efficiency, rapid response time, minimal pollution and straightforward system, has emerged as a promising approach to address the critical issue of freshwater scarcity. Among the various materials investigated, polymer-based gels have emerged as excellent candidate for solar evaporation. Based on the highly tunable molecular structures, interconnected porous channels, and inherent hydrophilicity, polymer gel could efficiently convert the absorbed sunlight into heat via incorporating light-absorbing particles or molecules into the gel matrix, hence promoting rapid evaporation. This review provides an overview of polymer gels in the field of interfacial evaporation, focusing on the structure regulation, crosslinking mechanism and design strategies for solar evaporators. The research progress on applications of polymer-based gels is also discussed, including seawater desalination, wastewater treatment, water-electricity co-production, water-hydrogen co-production and the extraction of rare metals. Additionally, the challenges and opportunities for polymer-based solar evaporators are addressed in the context of sustainable development.</div></div>","PeriodicalId":100958,"journal":{"name":"Next Materials","volume":"6 ","pages":"Article 100432"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Next Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949822824003307","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Solar-driven interfacial evaporation (SDIE), with merits of high evaporation efficiency, rapid response time, minimal pollution and straightforward system, has emerged as a promising approach to address the critical issue of freshwater scarcity. Among the various materials investigated, polymer-based gels have emerged as excellent candidate for solar evaporation. Based on the highly tunable molecular structures, interconnected porous channels, and inherent hydrophilicity, polymer gel could efficiently convert the absorbed sunlight into heat via incorporating light-absorbing particles or molecules into the gel matrix, hence promoting rapid evaporation. This review provides an overview of polymer gels in the field of interfacial evaporation, focusing on the structure regulation, crosslinking mechanism and design strategies for solar evaporators. The research progress on applications of polymer-based gels is also discussed, including seawater desalination, wastewater treatment, water-electricity co-production, water-hydrogen co-production and the extraction of rare metals. Additionally, the challenges and opportunities for polymer-based solar evaporators are addressed in the context of sustainable development.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信