Engage and learn: Improved learning of cellular structures using a virtual reality-based learning experience

Heino Laubscher , Ben Loos , Rensu P. Theart
{"title":"Engage and learn: Improved learning of cellular structures using a virtual reality-based learning experience","authors":"Heino Laubscher ,&nbsp;Ben Loos ,&nbsp;Rensu P. Theart","doi":"10.1016/j.cexr.2024.100089","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the efficacy of Virtual Reality (VR) as an interactive tool for teaching complex cellular structures and functions. Despite VR’s growing popularity in education, its effectiveness remains debated, often due to the absence of guiding learning theories in VR design studies. Addressing this gap, we developed a VR-based learning experience grounded in the Cognitive Theory of Multimedia Learning (CTML). Utilising modern microscopy techniques, we transformed confocal microscopy z-stacks into three-dimensional cellular structures, enhanced with artistic impressions for VR visualisation. A user study with 52 participants, primarily engineering students, compared the VR learning experience to traditional slideshow methods. Results indicated that the VR group demonstrated significantly higher learning performance and understanding of mammalian cell structures compared to the slideshow group. Additionally, participants in the VR group reported greater intrinsic motivation, presence, and perceived learning effectiveness. These findings suggest VR’s potential as a superior teaching tool in cell physiology and underscore the importance of integrating learning theories like CTML in VR educational design. The principles applied in this study could extend to other educational domains, enhancing learning outcomes through well-theorised VR applications.</div></div>","PeriodicalId":100320,"journal":{"name":"Computers & Education: X Reality","volume":"5 ","pages":"Article 100089"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Education: X Reality","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949678024000394","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the efficacy of Virtual Reality (VR) as an interactive tool for teaching complex cellular structures and functions. Despite VR’s growing popularity in education, its effectiveness remains debated, often due to the absence of guiding learning theories in VR design studies. Addressing this gap, we developed a VR-based learning experience grounded in the Cognitive Theory of Multimedia Learning (CTML). Utilising modern microscopy techniques, we transformed confocal microscopy z-stacks into three-dimensional cellular structures, enhanced with artistic impressions for VR visualisation. A user study with 52 participants, primarily engineering students, compared the VR learning experience to traditional slideshow methods. Results indicated that the VR group demonstrated significantly higher learning performance and understanding of mammalian cell structures compared to the slideshow group. Additionally, participants in the VR group reported greater intrinsic motivation, presence, and perceived learning effectiveness. These findings suggest VR’s potential as a superior teaching tool in cell physiology and underscore the importance of integrating learning theories like CTML in VR educational design. The principles applied in this study could extend to other educational domains, enhancing learning outcomes through well-theorised VR applications.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信