The effects of a combination of maize/peanut intercropping and residue return on soil microbial nutrient limitation in maize fields

IF 4.8 2区 农林科学 Q1 SOIL SCIENCE
Fanyun Yao , Wei Qi , Yujun Cao , Jie Liang , Xiaodan Liu , Zhiming Liu , Yanjie Lv , Wenwen Wei , Wenhua Xu , Yang Yu , Xiang Li , Jian Feng , Yongjun Wang
{"title":"The effects of a combination of maize/peanut intercropping and residue return on soil microbial nutrient limitation in maize fields","authors":"Fanyun Yao ,&nbsp;Wei Qi ,&nbsp;Yujun Cao ,&nbsp;Jie Liang ,&nbsp;Xiaodan Liu ,&nbsp;Zhiming Liu ,&nbsp;Yanjie Lv ,&nbsp;Wenwen Wei ,&nbsp;Wenhua Xu ,&nbsp;Yang Yu ,&nbsp;Xiang Li ,&nbsp;Jian Feng ,&nbsp;Yongjun Wang","doi":"10.1016/j.apsoil.2025.105874","DOIUrl":null,"url":null,"abstract":"<div><div>Maize-leguminous intercropping (IN) and residue retention (RR) have been widely adopted to mitigate the negative effects of intensive agriculture on soil health. These practices can affect soil carbon (C), nitrogen (N), and phosphorus (P) cycles and their stoichiometric characteristics. However, the changes in soil fertility and microbial nutrient limitation under long-term IN and RR combined measures remain unclear. We investigated the covariance of soil-microbial-extracellular enzyme C, N, and P stoichiometric characteristics in maize fields based on a six-year maize/peanut IN system in northeast China. In addition, the energy (C) and nutrient (N, P) limitation of soil microorganisms was analyzed using the soil extracellular enzyme vector model. The results showed that (i). IN increased the SOC significantly. IN and RR increased the total nitrogen (TN) and total phosphorus (TP) contents. Furthermore, the combined measures of both IN and RR were more effective in improving soil nutrient contents than single measures. RR significantly reduced the soil C:P and N:P ratios, while IN had no significant effect on these ratios. (ii). IN exerted a significant positive effect on the contents of microbial biomass carbon (MBC), microbial biomass nitrogen (MBN), and microbial biomass phosphorus (MBP). Concurrently, it led to a significant reduction in the ratios of MBC:MBN and MBC:MBP. In contrast, RR induced a significant increase in the content of MBN and the ratio of MBC:MBN, while significantly decreasing the ratio of MBN:MBP. (iii) IN significantly increased the activities of β-1,4-glucosidase (BG), β-1,4-<em>N</em>-acetylglucosaminidase (NAG) + leucine aminopeptidase (LAP), and alkaline phosphatase (AP), while RR only significantly raised the activity of BG. Moreover, significant interaction effects were observed between IN and RR with respect to the activities of BG, NAG + LAP, and AP. Additionally, both IN and RR significantly increased the ratios of BG:(NAG + LAP) and BG:AP, with significant interaction effects also being noted for these ratios. (iv) Soil microorganisms in the study area were jointly limited by C and N. Microbial N limitation was closely related to TC and TP as well as MBN and MBP. IN, RR, and their combined application improved soil nutrient, MBN, and MBP contents, thereby enhancing the availability of N elements and thus alleviating the microbial N limitation to a certain extent. In conclusion, in the black soil area of Northeast China, the combined measures of intercropping and residue retention have a positive impact on crucial soil fertility indicators, including SOC, TN and TP contents, as well as microbial biomass. Moreover, these combined measures also alleviate soil microbial N limitation.</div></div>","PeriodicalId":8099,"journal":{"name":"Applied Soil Ecology","volume":"206 ","pages":"Article 105874"},"PeriodicalIF":4.8000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Soil Ecology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0929139325000125","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Maize-leguminous intercropping (IN) and residue retention (RR) have been widely adopted to mitigate the negative effects of intensive agriculture on soil health. These practices can affect soil carbon (C), nitrogen (N), and phosphorus (P) cycles and their stoichiometric characteristics. However, the changes in soil fertility and microbial nutrient limitation under long-term IN and RR combined measures remain unclear. We investigated the covariance of soil-microbial-extracellular enzyme C, N, and P stoichiometric characteristics in maize fields based on a six-year maize/peanut IN system in northeast China. In addition, the energy (C) and nutrient (N, P) limitation of soil microorganisms was analyzed using the soil extracellular enzyme vector model. The results showed that (i). IN increased the SOC significantly. IN and RR increased the total nitrogen (TN) and total phosphorus (TP) contents. Furthermore, the combined measures of both IN and RR were more effective in improving soil nutrient contents than single measures. RR significantly reduced the soil C:P and N:P ratios, while IN had no significant effect on these ratios. (ii). IN exerted a significant positive effect on the contents of microbial biomass carbon (MBC), microbial biomass nitrogen (MBN), and microbial biomass phosphorus (MBP). Concurrently, it led to a significant reduction in the ratios of MBC:MBN and MBC:MBP. In contrast, RR induced a significant increase in the content of MBN and the ratio of MBC:MBN, while significantly decreasing the ratio of MBN:MBP. (iii) IN significantly increased the activities of β-1,4-glucosidase (BG), β-1,4-N-acetylglucosaminidase (NAG) + leucine aminopeptidase (LAP), and alkaline phosphatase (AP), while RR only significantly raised the activity of BG. Moreover, significant interaction effects were observed between IN and RR with respect to the activities of BG, NAG + LAP, and AP. Additionally, both IN and RR significantly increased the ratios of BG:(NAG + LAP) and BG:AP, with significant interaction effects also being noted for these ratios. (iv) Soil microorganisms in the study area were jointly limited by C and N. Microbial N limitation was closely related to TC and TP as well as MBN and MBP. IN, RR, and their combined application improved soil nutrient, MBN, and MBP contents, thereby enhancing the availability of N elements and thus alleviating the microbial N limitation to a certain extent. In conclusion, in the black soil area of Northeast China, the combined measures of intercropping and residue retention have a positive impact on crucial soil fertility indicators, including SOC, TN and TP contents, as well as microbial biomass. Moreover, these combined measures also alleviate soil microbial N limitation.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Soil Ecology
Applied Soil Ecology 农林科学-土壤科学
CiteScore
9.70
自引率
4.20%
发文量
363
审稿时长
5.3 months
期刊介绍: Applied Soil Ecology addresses the role of soil organisms and their interactions in relation to: sustainability and productivity, nutrient cycling and other soil processes, the maintenance of soil functions, the impact of human activities on soil ecosystems and bio(techno)logical control of soil-inhabiting pests, diseases and weeds.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信