Employing economic model predictive control for improving efficiency of the batch reactor carrying out decomposition of the Di-Cumyl-Peroxide

IF 5.5 3区 工程技术 Q1 ENGINEERING, CHEMICAL
Atanu Panda , Subhasish Mahapatra , Achu Govind K.R. , Rames C. Panda
{"title":"Employing economic model predictive control for improving efficiency of the batch reactor carrying out decomposition of the Di-Cumyl-Peroxide","authors":"Atanu Panda ,&nbsp;Subhasish Mahapatra ,&nbsp;Achu Govind K.R. ,&nbsp;Rames C. Panda","doi":"10.1016/j.jtice.2024.105864","DOIUrl":null,"url":null,"abstract":"<div><h3>Background:</h3><div>Batch reactors are used to produce agro-herbicides, often operating under metastable conditions. Exothermic reactions within these reactors can rapidly release large amounts of chemical energy, increasing the reaction rate and risking a runaway excursion. To prevent excessive heat dissipation, the reactor must operate within a lower mesophilic temperature range. The decomposition of dicumyl-peroxide is a notable example of a runaway reaction, characterized by multi-order thermo-kinetics with an Arrhenius temperature dependency. This decomposition rate is highly sensitive to factors such as Damkohler’s number, exothermic enthalpy, oxygen presence, substrate concentration, and initial temperature variations. Many kinetic parameters are not directly measurable in real-time applications.</div></div><div><h3>Method:</h3><div>(i) An economic stage cost is derived and integrated into a model-predictive-control (MPC) law to regulate coolant flow and manage exothermic heat dissipation, mitigating unmeasured disturbances and faults. (ii) For estimating unmeasured reactor states and uncertainties, a cubature Kalman filter with a singular-value-decomposition approach has been utilized. (iii) Event-triggered scheduling combined with cubature Kalman filter, reduced communication resource usage.</div></div><div><h3>Significant findings</h3><div>: The economics MPC controller tested on the dicumyl-peroxide system is compared with a standard nonlinear MPC rule, considering factors like cooling period, decomposition rate, and observer accuracy which ensures the effectiveness of the proposed algorithm.</div></div>","PeriodicalId":381,"journal":{"name":"Journal of the Taiwan Institute of Chemical Engineers","volume":"167 ","pages":"Article 105864"},"PeriodicalIF":5.5000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Taiwan Institute of Chemical Engineers","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1876107024005224","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background:

Batch reactors are used to produce agro-herbicides, often operating under metastable conditions. Exothermic reactions within these reactors can rapidly release large amounts of chemical energy, increasing the reaction rate and risking a runaway excursion. To prevent excessive heat dissipation, the reactor must operate within a lower mesophilic temperature range. The decomposition of dicumyl-peroxide is a notable example of a runaway reaction, characterized by multi-order thermo-kinetics with an Arrhenius temperature dependency. This decomposition rate is highly sensitive to factors such as Damkohler’s number, exothermic enthalpy, oxygen presence, substrate concentration, and initial temperature variations. Many kinetic parameters are not directly measurable in real-time applications.

Method:

(i) An economic stage cost is derived and integrated into a model-predictive-control (MPC) law to regulate coolant flow and manage exothermic heat dissipation, mitigating unmeasured disturbances and faults. (ii) For estimating unmeasured reactor states and uncertainties, a cubature Kalman filter with a singular-value-decomposition approach has been utilized. (iii) Event-triggered scheduling combined with cubature Kalman filter, reduced communication resource usage.

Significant findings

: The economics MPC controller tested on the dicumyl-peroxide system is compared with a standard nonlinear MPC rule, considering factors like cooling period, decomposition rate, and observer accuracy which ensures the effectiveness of the proposed algorithm.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.10
自引率
14.00%
发文量
362
审稿时长
35 days
期刊介绍: Journal of the Taiwan Institute of Chemical Engineers (formerly known as Journal of the Chinese Institute of Chemical Engineers) publishes original works, from fundamental principles to practical applications, in the broad field of chemical engineering with special focus on three aspects: Chemical and Biomolecular Science and Technology, Energy and Environmental Science and Technology, and Materials Science and Technology. Authors should choose for their manuscript an appropriate aspect section and a few related classifications when submitting to the journal online.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信