Experimental Investigation of Carbon-Based Nano-Enhanced Phase Change Materials Assimilated Photovoltaic Thermal System: Energy, Exergy and Environmental Assessment

IF 5.5 3区 工程技术 Q1 ENGINEERING, CHEMICAL
Reji Kumar Rajamony , A.K. Pandey , A.G.N. Sofiah , Johnny Koh Siaw Paw , Subbarama Kousik Suraparaju , Amanullah Fatehmulla , K. Chopra , M. Samykano , Rizwan A. Farade
{"title":"Experimental Investigation of Carbon-Based Nano-Enhanced Phase Change Materials Assimilated Photovoltaic Thermal System: Energy, Exergy and Environmental Assessment","authors":"Reji Kumar Rajamony ,&nbsp;A.K. Pandey ,&nbsp;A.G.N. Sofiah ,&nbsp;Johnny Koh Siaw Paw ,&nbsp;Subbarama Kousik Suraparaju ,&nbsp;Amanullah Fatehmulla ,&nbsp;K. Chopra ,&nbsp;M. Samykano ,&nbsp;Rizwan A. Farade","doi":"10.1016/j.jtice.2024.105835","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Photovoltaic thermal systems (PVT) are advanced systems designed to simultaneously generate heat and electricity. However, their commercial performance has not yet reached optimal levels, with efficient thermal regulation being a major challenge that directly affects energy production and efficiency.</div></div><div><h3>Methods</h3><div>This research introduces an innovative approach to enhancing PVT system performance by integrating active water cooling with passive functionalized carbon-based nano-enhanced phase change materials (NePHACMs) as a cooling medium. Four configurations were studied: PV, PVT, PVT-PHACM, and PVT-NePHACM, with fluid flow rates of 0.4-0.8 L/min. Indoor experiments were conducted for PV and PVT systems, while TRNSYS simulations assessed PVT-PHACM and PVT-NePHACM systems. The exergy approach was used to evaluate the energy available for productive use and exergy loss and entropy generation have been analyzed to enhance the electrical energy and thermal storage of the system. Additionally, carbon mitigation and carbon credit gain for all configurations were discussed.</div></div><div><h3>Significant Findings</h3><div>The NePHACM formulation significantly enhanced the system's thermal conductivity by 104%, reduced PV temperature, and improved both electrical and thermal energy production. The system achieved an overall energy efficiency of 85.02% and an exergy efficiency of 12.37%. Additionally, the hybrid system demonstrated exceptional effectiveness in reducing CO<sub>2</sub> emissions, highlighting NePHACM's potential to improve PVT system commercialization, especially for nocturnal applications.</div></div>","PeriodicalId":381,"journal":{"name":"Journal of the Taiwan Institute of Chemical Engineers","volume":"167 ","pages":"Article 105835"},"PeriodicalIF":5.5000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Taiwan Institute of Chemical Engineers","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1876107024004930","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Photovoltaic thermal systems (PVT) are advanced systems designed to simultaneously generate heat and electricity. However, their commercial performance has not yet reached optimal levels, with efficient thermal regulation being a major challenge that directly affects energy production and efficiency.

Methods

This research introduces an innovative approach to enhancing PVT system performance by integrating active water cooling with passive functionalized carbon-based nano-enhanced phase change materials (NePHACMs) as a cooling medium. Four configurations were studied: PV, PVT, PVT-PHACM, and PVT-NePHACM, with fluid flow rates of 0.4-0.8 L/min. Indoor experiments were conducted for PV and PVT systems, while TRNSYS simulations assessed PVT-PHACM and PVT-NePHACM systems. The exergy approach was used to evaluate the energy available for productive use and exergy loss and entropy generation have been analyzed to enhance the electrical energy and thermal storage of the system. Additionally, carbon mitigation and carbon credit gain for all configurations were discussed.

Significant Findings

The NePHACM formulation significantly enhanced the system's thermal conductivity by 104%, reduced PV temperature, and improved both electrical and thermal energy production. The system achieved an overall energy efficiency of 85.02% and an exergy efficiency of 12.37%. Additionally, the hybrid system demonstrated exceptional effectiveness in reducing CO2 emissions, highlighting NePHACM's potential to improve PVT system commercialization, especially for nocturnal applications.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.10
自引率
14.00%
发文量
362
审稿时长
35 days
期刊介绍: Journal of the Taiwan Institute of Chemical Engineers (formerly known as Journal of the Chinese Institute of Chemical Engineers) publishes original works, from fundamental principles to practical applications, in the broad field of chemical engineering with special focus on three aspects: Chemical and Biomolecular Science and Technology, Energy and Environmental Science and Technology, and Materials Science and Technology. Authors should choose for their manuscript an appropriate aspect section and a few related classifications when submitting to the journal online.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信