Redundancy of microbial P mobilization in beech forest soils with contrasting P stock: A microbial dilution experiment

IF 4.8 2区 农林科学 Q1 SOIL SCIENCE
Yijie Shi , Sasya Samhita , Sebastian Loeppmann , Iris Zimmermann , Michaela A. Dippold , Sandra Spielvogel
{"title":"Redundancy of microbial P mobilization in beech forest soils with contrasting P stock: A microbial dilution experiment","authors":"Yijie Shi ,&nbsp;Sasya Samhita ,&nbsp;Sebastian Loeppmann ,&nbsp;Iris Zimmermann ,&nbsp;Michaela A. Dippold ,&nbsp;Sandra Spielvogel","doi":"10.1016/j.apsoil.2024.105824","DOIUrl":null,"url":null,"abstract":"<div><div>Phosphorus (P) acquisition in forest ecosystems relies on litter cycling, but foliar P concentrations in beech forests are decreasing. This highlights the urgency to understand how soil microbes adapt to P limitations caused by environmental shifts. In this study, a novel approach combining <sup>33</sup>P-wick labeling to trace litter-P recycling with a microbial dilution approach was used to study microbial P cycling associated with microbial biodiversity loss. Sterilized soils, re-inoculated with different dilutions of their native microbial communities were incubated with <sup>33</sup>P-labeled beech litter for four weeks. The kinetics of acid phosphatase and the flux of <sup>33</sup>P into different soil pools were determined. Carbon (C), nitrogen (N), and P, in soil microbial biomass and in extractable pools (e.g., P<sub>resin</sub>) were measured. The acid phosphatase activity decreased by 75–92 % with the dilution increase from 10<sup>−4</sup> to 10<sup>−6</sup> at the P-rich site, indicating a functional loss of P mobilization. The overall acid phosphatase activity was 1-fold higher at the P-deficient site than at the P-rich site, suggesting a high functional redundancy of microbial P mobilization. The recoveries of litter-derived <sup>33</sup>P in soil microbial biomass (SMB) and in P<sub>resin</sub> were 5-fold and 2-fold higher for the P-deficient site than for the P-rich site throughout all dilutions, suggesting that the recycling of litter-P by SMB in the P-deficient soil is highly redundant as an intermediate reservoir. Our study confirms that the high functional redundancy of microbial P acquisition at a P-deficient forest site can maintain pivotal microbial acquisition processes for P uptake.</div></div>","PeriodicalId":8099,"journal":{"name":"Applied Soil Ecology","volume":"206 ","pages":"Article 105824"},"PeriodicalIF":4.8000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Soil Ecology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0929139324005559","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Phosphorus (P) acquisition in forest ecosystems relies on litter cycling, but foliar P concentrations in beech forests are decreasing. This highlights the urgency to understand how soil microbes adapt to P limitations caused by environmental shifts. In this study, a novel approach combining 33P-wick labeling to trace litter-P recycling with a microbial dilution approach was used to study microbial P cycling associated with microbial biodiversity loss. Sterilized soils, re-inoculated with different dilutions of their native microbial communities were incubated with 33P-labeled beech litter for four weeks. The kinetics of acid phosphatase and the flux of 33P into different soil pools were determined. Carbon (C), nitrogen (N), and P, in soil microbial biomass and in extractable pools (e.g., Presin) were measured. The acid phosphatase activity decreased by 75–92 % with the dilution increase from 10−4 to 10−6 at the P-rich site, indicating a functional loss of P mobilization. The overall acid phosphatase activity was 1-fold higher at the P-deficient site than at the P-rich site, suggesting a high functional redundancy of microbial P mobilization. The recoveries of litter-derived 33P in soil microbial biomass (SMB) and in Presin were 5-fold and 2-fold higher for the P-deficient site than for the P-rich site throughout all dilutions, suggesting that the recycling of litter-P by SMB in the P-deficient soil is highly redundant as an intermediate reservoir. Our study confirms that the high functional redundancy of microbial P acquisition at a P-deficient forest site can maintain pivotal microbial acquisition processes for P uptake.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Soil Ecology
Applied Soil Ecology 农林科学-土壤科学
CiteScore
9.70
自引率
4.20%
发文量
363
审稿时长
5.3 months
期刊介绍: Applied Soil Ecology addresses the role of soil organisms and their interactions in relation to: sustainability and productivity, nutrient cycling and other soil processes, the maintenance of soil functions, the impact of human activities on soil ecosystems and bio(techno)logical control of soil-inhabiting pests, diseases and weeds.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信