Electrolytic CO2 reduction in membrane electrode assembly: Challenges in (Bi)carbonate, crossover, and stability

Minqiu Lan, Wenhao Ren
{"title":"Electrolytic CO2 reduction in membrane electrode assembly: Challenges in (Bi)carbonate, crossover, and stability","authors":"Minqiu Lan,&nbsp;Wenhao Ren","doi":"10.1016/j.nxmate.2025.100506","DOIUrl":null,"url":null,"abstract":"<div><div>Membrane electrode assembly (MEA) electrolyzers for carbon dioxide reduction reaction (CO<sub>2</sub>RR) present a transformative approach for reducing CO<sub>2</sub> emissions while producing valuable chemicals. However, their commercialization is still hindered by several inherent challenges. This review outlines these critical bottlenecks and highlights recent advances aimed at enhancing the performance of CO<sub>2</sub>R MEA electrolyzers. First, the in-situ generated carbonate and bicarbonate species at the cathode can migrate to the anode or form salt precipitates, which reduces carbon efficiency (CO<sub>2</sub>-to-products) and obstructs gas diffusion channels. Second, product crossover can be diluted or even re-oxidized at the anode, resulting in increased energy consumption for product separation and electrolyte regeneration. Finally, the stability of CO<sub>2</sub>R MEA electrolyzers, particularly when producing multi-carbon (C<sub>2+</sub>) products, remains far insufficient for commercial viability, as degradation of the catalyst layer, gas diffusion electrode, and anolyte significantly impacts performance. To address these challenges, this review identifies potential solutions and future directions, including pure-water-fed strategy, hydrophobic catalyst layer designs, and membrane customization.</div></div>","PeriodicalId":100958,"journal":{"name":"Next Materials","volume":"6 ","pages":"Article 100506"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Next Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949822825000243","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Membrane electrode assembly (MEA) electrolyzers for carbon dioxide reduction reaction (CO2RR) present a transformative approach for reducing CO2 emissions while producing valuable chemicals. However, their commercialization is still hindered by several inherent challenges. This review outlines these critical bottlenecks and highlights recent advances aimed at enhancing the performance of CO2R MEA electrolyzers. First, the in-situ generated carbonate and bicarbonate species at the cathode can migrate to the anode or form salt precipitates, which reduces carbon efficiency (CO2-to-products) and obstructs gas diffusion channels. Second, product crossover can be diluted or even re-oxidized at the anode, resulting in increased energy consumption for product separation and electrolyte regeneration. Finally, the stability of CO2R MEA electrolyzers, particularly when producing multi-carbon (C2+) products, remains far insufficient for commercial viability, as degradation of the catalyst layer, gas diffusion electrode, and anolyte significantly impacts performance. To address these challenges, this review identifies potential solutions and future directions, including pure-water-fed strategy, hydrophobic catalyst layer designs, and membrane customization.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信