12-year N addition enhances soil organic carbon decomposition by mediating microbial community composition in temperate plantations

IF 4.8 2区 农林科学 Q1 SOIL SCIENCE
Xinyi Wu , Yanyan Liu , Hongjin Zhang , Lizheng Dong , Yiping Zuo , Xiaoyue Li , Wei Wang
{"title":"12-year N addition enhances soil organic carbon decomposition by mediating microbial community composition in temperate plantations","authors":"Xinyi Wu ,&nbsp;Yanyan Liu ,&nbsp;Hongjin Zhang ,&nbsp;Lizheng Dong ,&nbsp;Yiping Zuo ,&nbsp;Xiaoyue Li ,&nbsp;Wei Wang","doi":"10.1016/j.apsoil.2024.105856","DOIUrl":null,"url":null,"abstract":"<div><div>Soil respiration is a crucial contributor to atmospheric CO<sub>2</sub> flux and microbial communities play a vital role in carbon cycling in terrestrial ecosystems. However, the response of microbial community characteristics (such as diversity and composition) and their roles in regulating soil respiration under nitrogen (N) deposition remain unclear. Here, we conducted a 12-year N addition experiment (0, 2, 5, 10 g N m<sup>−2</sup> year<sup>−1</sup>) in a temperate plantation to elucidate the mechanisms of autotrophic respiration and heterotrophic respiration in response to environmental and microbial factors. The results showed heterotrophic respiration increased significantly only under high-N addition (10 g N m<sup>−2</sup> year<sup>−1</sup>), and autotrophic respiration decreased significantly under moderate-N (5 g N m<sup>−2</sup> year<sup>−1</sup>) and high-N addition (10 g N m<sup>−2</sup> year<sup>−1</sup>). The decrease in autotrophic respiration was primarily driven by environmental factors, such as soil pH and N availability, whereas the increase in heterotrophic respiration resulted from changes in the microbial community. Fungi Leotiomycetes, Sordariomycetes, and Rhizophydiomycetes were identified as the key microbial predictors influencing heterotrophic respiration under N addition. Our work identified the role of soil microbial community composition in promoting soil organic matter decomposition under long-term N deposition. And we emphasized the importance of incorporating microbial community information into ecosystem models to improve predictions of climate‑carbon cycle feedbacks.</div></div>","PeriodicalId":8099,"journal":{"name":"Applied Soil Ecology","volume":"206 ","pages":"Article 105856"},"PeriodicalIF":4.8000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Soil Ecology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0929139324005870","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Soil respiration is a crucial contributor to atmospheric CO2 flux and microbial communities play a vital role in carbon cycling in terrestrial ecosystems. However, the response of microbial community characteristics (such as diversity and composition) and their roles in regulating soil respiration under nitrogen (N) deposition remain unclear. Here, we conducted a 12-year N addition experiment (0, 2, 5, 10 g N m−2 year−1) in a temperate plantation to elucidate the mechanisms of autotrophic respiration and heterotrophic respiration in response to environmental and microbial factors. The results showed heterotrophic respiration increased significantly only under high-N addition (10 g N m−2 year−1), and autotrophic respiration decreased significantly under moderate-N (5 g N m−2 year−1) and high-N addition (10 g N m−2 year−1). The decrease in autotrophic respiration was primarily driven by environmental factors, such as soil pH and N availability, whereas the increase in heterotrophic respiration resulted from changes in the microbial community. Fungi Leotiomycetes, Sordariomycetes, and Rhizophydiomycetes were identified as the key microbial predictors influencing heterotrophic respiration under N addition. Our work identified the role of soil microbial community composition in promoting soil organic matter decomposition under long-term N deposition. And we emphasized the importance of incorporating microbial community information into ecosystem models to improve predictions of climate‑carbon cycle feedbacks.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Soil Ecology
Applied Soil Ecology 农林科学-土壤科学
CiteScore
9.70
自引率
4.20%
发文量
363
审稿时长
5.3 months
期刊介绍: Applied Soil Ecology addresses the role of soil organisms and their interactions in relation to: sustainability and productivity, nutrient cycling and other soil processes, the maintenance of soil functions, the impact of human activities on soil ecosystems and bio(techno)logical control of soil-inhabiting pests, diseases and weeds.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信