NIR-II cascade-driven synergistic photodynamic and photothermal cancer therapies via 5-aminolevulinic acid-functionalized titanium carbide hexagonal nanorods

IF 5.9 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Wu Yanlin , Zhang Jingjing , Abdul Wahab , Zahoor Ahmad , Kamran Ali , Rahman Md Saidur , M. Zubair Iqbal , Xiangdong Kong
{"title":"NIR-II cascade-driven synergistic photodynamic and photothermal cancer therapies via 5-aminolevulinic acid-functionalized titanium carbide hexagonal nanorods","authors":"Wu Yanlin ,&nbsp;Zhang Jingjing ,&nbsp;Abdul Wahab ,&nbsp;Zahoor Ahmad ,&nbsp;Kamran Ali ,&nbsp;Rahman Md Saidur ,&nbsp;M. Zubair Iqbal ,&nbsp;Xiangdong Kong","doi":"10.1016/j.flatc.2025.100826","DOIUrl":null,"url":null,"abstract":"<div><div>Photo-stimuli-responsive therapeutic nanomaterials hold significant promise for advancing cancer treatment due to their innovative mechanisms of action. In this study, we present Ti₃C₂ hexagonal nanorods (HNRs) as a versatile platform for combined photothermal therapy (PTT) and photodynamic therapy (PDT). Ti₃C₂ HNRs were synthesized via a two-step process involving aluminum etching from Ti₃AlC₂ and subsequent hydrothermal treatment, yielding high-purity, uniform hexagonal nanorods with an average size of ∼50 nm. Functionalized with 5-aminolevulinic acid (5-ALA) and folic acid (FA) to enhance cancer cell targeting and therapeutic efficacy, the Ti₃C₂ HNRs demonstrated dual functionalities. The HNRs solution achieved a temperature of 65.4 °C under 1064 nm laser irradiation (1.5 W/cm<sup>2</sup>, 250 μg/mL), suitable for PTT, compared to 45 °C under 808 nm laser irradiation (300 μg/mL), which was insufficient. Additionally, the Ti₃C₂-5-ALA-FA HNRs generated reactive oxygen species (ROS) under NIR laser irradiation, enabling PDT. This synergistic PTT-PDT approach achieved a 95 % cancer cell death rate, highlighting its potential for future in vivo studies and clinical applications as a transformative cancer therapy.</div></div>","PeriodicalId":316,"journal":{"name":"FlatChem","volume":"50 ","pages":"Article 100826"},"PeriodicalIF":5.9000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"FlatChem","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452262725000200","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Photo-stimuli-responsive therapeutic nanomaterials hold significant promise for advancing cancer treatment due to their innovative mechanisms of action. In this study, we present Ti₃C₂ hexagonal nanorods (HNRs) as a versatile platform for combined photothermal therapy (PTT) and photodynamic therapy (PDT). Ti₃C₂ HNRs were synthesized via a two-step process involving aluminum etching from Ti₃AlC₂ and subsequent hydrothermal treatment, yielding high-purity, uniform hexagonal nanorods with an average size of ∼50 nm. Functionalized with 5-aminolevulinic acid (5-ALA) and folic acid (FA) to enhance cancer cell targeting and therapeutic efficacy, the Ti₃C₂ HNRs demonstrated dual functionalities. The HNRs solution achieved a temperature of 65.4 °C under 1064 nm laser irradiation (1.5 W/cm2, 250 μg/mL), suitable for PTT, compared to 45 °C under 808 nm laser irradiation (300 μg/mL), which was insufficient. Additionally, the Ti₃C₂-5-ALA-FA HNRs generated reactive oxygen species (ROS) under NIR laser irradiation, enabling PDT. This synergistic PTT-PDT approach achieved a 95 % cancer cell death rate, highlighting its potential for future in vivo studies and clinical applications as a transformative cancer therapy.

Abstract Image

通过5-氨基乙酰丙酸功能化碳化钛六方纳米棒,NIR-II级联驱动的协同光动力和光热癌症治疗
光刺激反应治疗纳米材料由于其创新的作用机制,在推进癌症治疗方面具有重要的前景。在这项研究中,我们提出Ti₃C₂六边形纳米棒(HNRs)作为联合光热疗法(PTT)和光动力疗法(PDT)的多功能平台。以Ti₃AlC₂为原料,通过铝蚀刻和水热处理两步法合成了Ti₃C₂hnr,得到了高纯度、均匀的六方纳米棒,平均尺寸为~ 50 nm。Ti₃C₂hnr与5-氨基乙酰丙酸(5-ALA)和叶酸(FA)功能化,增强了癌细胞靶向性和治疗效果,具有双重功能。在1064 nm激光照射(1.5 W/cm2, 250 μg/mL)下,HNRs溶液的温度达到65.4℃,适合用于PTT,而在808 nm激光照射(300 μg/mL)下,HNRs溶液的温度为45℃,不足。此外,Ti₃C₂-5-ALA-FA HNRs在近红外激光照射下产生活性氧(ROS),实现了PDT。这种协同的PTT-PDT方法实现了95%的癌细胞死亡率,突出了其作为一种变革性癌症治疗的未来体内研究和临床应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
FlatChem
FlatChem Multiple-
CiteScore
8.40
自引率
6.50%
发文量
104
审稿时长
26 days
期刊介绍: FlatChem - Chemistry of Flat Materials, a new voice in the community, publishes original and significant, cutting-edge research related to the chemistry of graphene and related 2D & layered materials. The overall aim of the journal is to combine the chemistry and applications of these materials, where the submission of communications, full papers, and concepts should contain chemistry in a materials context, which can be both experimental and/or theoretical. In addition to original research articles, FlatChem also offers reviews, minireviews, highlights and perspectives on the future of this research area with the scientific leaders in fields related to Flat Materials. Topics of interest include, but are not limited to, the following: -Design, synthesis, applications and investigation of graphene, graphene related materials and other 2D & layered materials (for example Silicene, Germanene, Phosphorene, MXenes, Boron nitride, Transition metal dichalcogenides) -Characterization of these materials using all forms of spectroscopy and microscopy techniques -Chemical modification or functionalization and dispersion of these materials, as well as interactions with other materials -Exploring the surface chemistry of these materials for applications in: Sensors or detectors in electrochemical/Lab on a Chip devices, Composite materials, Membranes, Environment technology, Catalysis for energy storage and conversion (for example fuel cells, supercapacitors, batteries, hydrogen storage), Biomedical technology (drug delivery, biosensing, bioimaging)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信