Australian critical metal exploration for analogues of Chinese ionic-clay REE deposits

Allan Trench , Liang Zhang , David I. Groves , David Crook , Nigel W. Brand
{"title":"Australian critical metal exploration for analogues of Chinese ionic-clay REE deposits","authors":"Allan Trench ,&nbsp;Liang Zhang ,&nbsp;David I. Groves ,&nbsp;David Crook ,&nbsp;Nigel W. Brand","doi":"10.1016/j.geogeo.2024.100293","DOIUrl":null,"url":null,"abstract":"<div><div>The clean energy transition has focused attention on the critical metals required for manufacture of new energy technologies. The extremely heterogeneous distribution of critical metal mineral deposits requires that countries must make new discoveries of key critical metals to avoid potential future geopolitical risks. Although Australia has REE resources, they are mainly of LREEs, so deposit styles with significant HREEs are key targets. The most obvious are the so-called ionic-clay REE deposits of southern China that are the major global suppliers of HREEs. Mineral exploration in Australia using the Chinese model is producing hitherto unrecognized REE concentrations, here termed regolith-hosted REE mineralization, in a variety of regolith types in several weathering environments, particularly in Western and South Australia. Amongst these has been the discovery of near-surface, regolith-hosted REE mineralization in the Albany-Fraser Orogen which has the potential to complement REE production from the giant Mount Weld carbonatite and other monazite-sand deposits in Western Australia. Widespread near-surface, regolith-hosted REE mineralization is present over an area of 12,000 km<sup>2</sup> in the Esperance District. As much of this area is beneath barren Eocene-aged cover clays, all the new REE discoveries have been made, and are being delineated using shallow drilling, to depths of less than 80 m. The exploration implication is that the search space for regolith hosted REE deposits in Western Australia remains immature. These recently discovered deposits have both similarities and contrasts with geological features of ionic clay hosted REE deposits in China. Similarities include their apparent paragenesis and geometry, particularly their blanket morphology, sub-horizontal and gentle dips, and the common, but not exclusive, relationship with felsic basement terranes. However, Western Australian prospects are related to Upper Cretaceous to Eocene climates rather than more recent weathering under sub-tropical conditions. Whether the deposits can be developed to production remains unclear, with project economics tied closely to the efficacy of mineral processing technologies that target high REE extraction rates and recoveries.</div></div>","PeriodicalId":100582,"journal":{"name":"Geosystems and Geoenvironment","volume":"4 1","pages":"Article 100293"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geosystems and Geoenvironment","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772883824000438","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The clean energy transition has focused attention on the critical metals required for manufacture of new energy technologies. The extremely heterogeneous distribution of critical metal mineral deposits requires that countries must make new discoveries of key critical metals to avoid potential future geopolitical risks. Although Australia has REE resources, they are mainly of LREEs, so deposit styles with significant HREEs are key targets. The most obvious are the so-called ionic-clay REE deposits of southern China that are the major global suppliers of HREEs. Mineral exploration in Australia using the Chinese model is producing hitherto unrecognized REE concentrations, here termed regolith-hosted REE mineralization, in a variety of regolith types in several weathering environments, particularly in Western and South Australia. Amongst these has been the discovery of near-surface, regolith-hosted REE mineralization in the Albany-Fraser Orogen which has the potential to complement REE production from the giant Mount Weld carbonatite and other monazite-sand deposits in Western Australia. Widespread near-surface, regolith-hosted REE mineralization is present over an area of 12,000 km2 in the Esperance District. As much of this area is beneath barren Eocene-aged cover clays, all the new REE discoveries have been made, and are being delineated using shallow drilling, to depths of less than 80 m. The exploration implication is that the search space for regolith hosted REE deposits in Western Australia remains immature. These recently discovered deposits have both similarities and contrasts with geological features of ionic clay hosted REE deposits in China. Similarities include their apparent paragenesis and geometry, particularly their blanket morphology, sub-horizontal and gentle dips, and the common, but not exclusive, relationship with felsic basement terranes. However, Western Australian prospects are related to Upper Cretaceous to Eocene climates rather than more recent weathering under sub-tropical conditions. Whether the deposits can be developed to production remains unclear, with project economics tied closely to the efficacy of mineral processing technologies that target high REE extraction rates and recoveries.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信