Linking sand/dust storms hotspots and land use over Iran

IF 3.9 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES
Mahdi Boroughani , Rahman Zandi , Sima Pourhashemi , Hamid Gholami , Dimitris G. Kaskaoutis
{"title":"Linking sand/dust storms hotspots and land use over Iran","authors":"Mahdi Boroughani ,&nbsp;Rahman Zandi ,&nbsp;Sima Pourhashemi ,&nbsp;Hamid Gholami ,&nbsp;Dimitris G. Kaskaoutis","doi":"10.1016/j.apr.2024.102380","DOIUrl":null,"url":null,"abstract":"<div><div>Sand and dust storms (SDS), as a direct consequence of land degradation and wind erosion, is an important environmental challenge in the last two decades, especially in arid and semi-arid areas. Land use changes due to human intervention and soil's susceptibility to erosion are among the most important factors influencing the SDS hotspots. This study aims to explore possible linkage between land use changes and SDS hotspots in Iran during a 20-years period (2001–2022). In this scope, four dust characterization indices based on MODIS observations (BTD<sub>3132</sub>, BTD<sub>2931</sub>, NDDI, and D) were employed to identify the SDS hotspots. Then, the land use – land cover (LULC) changes over Iran were mapped using MODIS images, aiming to identify the areas exhibiting large LULC changes and tendency to become SDS hotspots. Finally, the LULC changes were analyzed with respect to SDS hotspots. The results revealed 618 SDS hotspots in the whole Iranian territory, with the largest number of them located in non-vegetated lands, scattered shrubs and rangelands. In addition, Zabol in east Iran presented the highest frequency of SDS, while southwest Iran faced also a large number of SDS. The highest number of SDS was recorded in 2008 in most of the country's stations, following the dust-regime shift in the Middle East due to prolonged drought. Current methodology links SDS hotspots and LULC changes very well and can be helpful for developing mitigation strategies for the consequences of human and climate-induced LULC changes, wind erosion and SDS in arid environments.</div></div>","PeriodicalId":8604,"journal":{"name":"Atmospheric Pollution Research","volume":"16 2","pages":"Article 102380"},"PeriodicalIF":3.9000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Pollution Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1309104224003453","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Sand and dust storms (SDS), as a direct consequence of land degradation and wind erosion, is an important environmental challenge in the last two decades, especially in arid and semi-arid areas. Land use changes due to human intervention and soil's susceptibility to erosion are among the most important factors influencing the SDS hotspots. This study aims to explore possible linkage between land use changes and SDS hotspots in Iran during a 20-years period (2001–2022). In this scope, four dust characterization indices based on MODIS observations (BTD3132, BTD2931, NDDI, and D) were employed to identify the SDS hotspots. Then, the land use – land cover (LULC) changes over Iran were mapped using MODIS images, aiming to identify the areas exhibiting large LULC changes and tendency to become SDS hotspots. Finally, the LULC changes were analyzed with respect to SDS hotspots. The results revealed 618 SDS hotspots in the whole Iranian territory, with the largest number of them located in non-vegetated lands, scattered shrubs and rangelands. In addition, Zabol in east Iran presented the highest frequency of SDS, while southwest Iran faced also a large number of SDS. The highest number of SDS was recorded in 2008 in most of the country's stations, following the dust-regime shift in the Middle East due to prolonged drought. Current methodology links SDS hotspots and LULC changes very well and can be helpful for developing mitigation strategies for the consequences of human and climate-induced LULC changes, wind erosion and SDS in arid environments.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Atmospheric Pollution Research
Atmospheric Pollution Research ENVIRONMENTAL SCIENCES-
CiteScore
8.30
自引率
6.70%
发文量
256
审稿时长
36 days
期刊介绍: Atmospheric Pollution Research (APR) is an international journal designed for the publication of articles on air pollution. Papers should present novel experimental results, theory and modeling of air pollution on local, regional, or global scales. Areas covered are research on inorganic, organic, and persistent organic air pollutants, air quality monitoring, air quality management, atmospheric dispersion and transport, air-surface (soil, water, and vegetation) exchange of pollutants, dry and wet deposition, indoor air quality, exposure assessment, health effects, satellite measurements, natural emissions, atmospheric chemistry, greenhouse gases, and effects on climate change.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信