Long-term forecasting of shield tunnel position and attitude deviation using the 1DCNN-informer method

IF 5.1 2区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY
Jiajie Zhen , Ming Huang , Shuang Li , Kai Xu , Qianghu Zhao
{"title":"Long-term forecasting of shield tunnel position and attitude deviation using the 1DCNN-informer method","authors":"Jiajie Zhen ,&nbsp;Ming Huang ,&nbsp;Shuang Li ,&nbsp;Kai Xu ,&nbsp;Qianghu Zhao","doi":"10.1016/j.jestch.2025.101957","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate prediction of shield machine position and attitude is crucial for ensuring the quality of tunnel construction. However, current machine learning models for predicting the position and attitude deviations of shield machines encounter significant challenges in achieving reliable long-term forecasting during shield tunneling. This study introduces a novel deep learning model, termed 1DCNN-Informer, which integrates the one-dimensional convolutional neural network (1DCNN) and the Informer model. The model was trained and validated using datasets from the Nanjing Metro shield tunnel project in China. Furthermore, the 1DCNN-Informer model was transferred to datasets from both similar and different geological conditions using the domain adversarial neural network (DANN) transfer learning method. The importance of input features was analyzed using the Shapley additive explanations (SHAP) method, complemented by experiments with various input parameter combinations. Results demonstrate that the 1DCNN-Informer model achieves superior performance compared to the Informer model and surpasses other comparative models, such as PatchTST, iTransformer, and Dlinear, in the majority of input sequence length and prediction sequence length combinations. Additionally, the DANN transfer learning method significantly enhances the 1DCNN-Informer model’s performance in the target domains dataset. The cutterhead rotation speed, advance speed, and chamber pressure are of critical importance in the prediction of shield position and attitude deviation. The proposed model not only represents a significant advancement in intelligent shield tunneling but also holds potential for broader application in automated equipment operations and multi-domain transfer learning studies in the field of engineering.</div></div>","PeriodicalId":48609,"journal":{"name":"Engineering Science and Technology-An International Journal-Jestech","volume":"63 ","pages":"Article 101957"},"PeriodicalIF":5.1000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Science and Technology-An International Journal-Jestech","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2215098625000126","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate prediction of shield machine position and attitude is crucial for ensuring the quality of tunnel construction. However, current machine learning models for predicting the position and attitude deviations of shield machines encounter significant challenges in achieving reliable long-term forecasting during shield tunneling. This study introduces a novel deep learning model, termed 1DCNN-Informer, which integrates the one-dimensional convolutional neural network (1DCNN) and the Informer model. The model was trained and validated using datasets from the Nanjing Metro shield tunnel project in China. Furthermore, the 1DCNN-Informer model was transferred to datasets from both similar and different geological conditions using the domain adversarial neural network (DANN) transfer learning method. The importance of input features was analyzed using the Shapley additive explanations (SHAP) method, complemented by experiments with various input parameter combinations. Results demonstrate that the 1DCNN-Informer model achieves superior performance compared to the Informer model and surpasses other comparative models, such as PatchTST, iTransformer, and Dlinear, in the majority of input sequence length and prediction sequence length combinations. Additionally, the DANN transfer learning method significantly enhances the 1DCNN-Informer model’s performance in the target domains dataset. The cutterhead rotation speed, advance speed, and chamber pressure are of critical importance in the prediction of shield position and attitude deviation. The proposed model not only represents a significant advancement in intelligent shield tunneling but also holds potential for broader application in automated equipment operations and multi-domain transfer learning studies in the field of engineering.
基于1dcnn的盾构隧道位置和姿态偏差长期预测
盾构机位置和姿态的准确预测是保证隧道施工质量的关键。然而,目前用于预测盾构机位置和姿态偏差的机器学习模型在盾构掘进过程中实现可靠的长期预测方面遇到了重大挑战。本研究引入了一种新的深度学习模型,称为1DCNN-Informer,它集成了一维卷积神经网络(1DCNN)和Informer模型。该模型使用中国南京地铁盾构隧道工程的数据集进行训练和验证。此外,利用领域对抗神经网络(DANN)迁移学习方法,将1DCNN-Informer模型转移到相似和不同地质条件的数据集上。采用Shapley加性解释(SHAP)方法分析了输入特征的重要性,并辅以不同输入参数组合的实验。结果表明,在大多数输入序列长度和预测序列长度组合中,1DCNN-Informer模型的性能优于Informer模型,并且优于其他比较模型,如PatchTST、iTransformer和Dlinear。此外,DANN迁移学习方法显著提高了1dcnn - inforformer模型在目标域数据集上的性能。刀盘转速、前进速度和腔室压力对盾构位置和姿态偏差的预测至关重要。该模型不仅代表了智能盾构隧道的重大进步,而且在自动化设备操作和工程领域的多领域迁移学习研究中具有更广泛的应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Engineering Science and Technology-An International Journal-Jestech
Engineering Science and Technology-An International Journal-Jestech Materials Science-Electronic, Optical and Magnetic Materials
CiteScore
11.20
自引率
3.50%
发文量
153
审稿时长
22 days
期刊介绍: Engineering Science and Technology, an International Journal (JESTECH) (formerly Technology), a peer-reviewed quarterly engineering journal, publishes both theoretical and experimental high quality papers of permanent interest, not previously published in journals, in the field of engineering and applied science which aims to promote the theory and practice of technology and engineering. In addition to peer-reviewed original research papers, the Editorial Board welcomes original research reports, state-of-the-art reviews and communications in the broadly defined field of engineering science and technology. The scope of JESTECH includes a wide spectrum of subjects including: -Electrical/Electronics and Computer Engineering (Biomedical Engineering and Instrumentation; Coding, Cryptography, and Information Protection; Communications, Networks, Mobile Computing and Distributed Systems; Compilers and Operating Systems; Computer Architecture, Parallel Processing, and Dependability; Computer Vision and Robotics; Control Theory; Electromagnetic Waves, Microwave Techniques and Antennas; Embedded Systems; Integrated Circuits, VLSI Design, Testing, and CAD; Microelectromechanical Systems; Microelectronics, and Electronic Devices and Circuits; Power, Energy and Energy Conversion Systems; Signal, Image, and Speech Processing) -Mechanical and Civil Engineering (Automotive Technologies; Biomechanics; Construction Materials; Design and Manufacturing; Dynamics and Control; Energy Generation, Utilization, Conversion, and Storage; Fluid Mechanics and Hydraulics; Heat and Mass Transfer; Micro-Nano Sciences; Renewable and Sustainable Energy Technologies; Robotics and Mechatronics; Solid Mechanics and Structure; Thermal Sciences) -Metallurgical and Materials Engineering (Advanced Materials Science; Biomaterials; Ceramic and Inorgnanic Materials; Electronic-Magnetic Materials; Energy and Environment; Materials Characterizastion; Metallurgy; Polymers and Nanocomposites)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信