Unified gas radiation model over the entire temperature range based on WSGG

IF 5 2区 工程技术 Q1 ENGINEERING, MECHANICAL
Fatmir Asllanaj , Sylvain Contassot-Vivier , Fabien Pascale , Roberta J.C. da Fonseca , Guilherme C. Fraga , Francis H.R. França
{"title":"Unified gas radiation model over the entire temperature range based on WSGG","authors":"Fatmir Asllanaj ,&nbsp;Sylvain Contassot-Vivier ,&nbsp;Fabien Pascale ,&nbsp;Roberta J.C. da Fonseca ,&nbsp;Guilherme C. Fraga ,&nbsp;Francis H.R. França","doi":"10.1016/j.ijheatmasstransfer.2025.126713","DOIUrl":null,"url":null,"abstract":"<div><div>A unified gas radiation model over the entire temperature range — the Unified model based on the Weighted-Sum-of-Gray-Gases (UWSGG) is proposed, which improves the accuracy of the standard WSGG model. The pressure absorption coefficient <span><math><msub><mrow><mi>κ</mi></mrow><mrow><mi>p</mi><mo>,</mo><mn>1</mn></mrow></msub></math></span> and the weighting factor <span><math><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> are approximated with quadratic polynomial functions of the temperature <span><math><mi>T</mi></math></span>. For <span><math><mi>K</mi></math></span> gray gases and <span><math><mrow><mn>2</mn><mo>≤</mo><mspace></mspace><mi>k</mi><mspace></mspace><mo>≤</mo><mi>K</mi></mrow></math></span>, <span><math><msub><mrow><mi>a</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> are determined by translation from <span><math><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>κ</mi></mrow><mrow><mi>p</mi><mo>,</mo><mi>k</mi></mrow></msub></math></span> by translation and multiplicative factors from <span><math><msub><mrow><mi>κ</mi></mrow><mrow><mi>p</mi><mo>,</mo><mn>1</mn></mrow></msub></math></span>. An efficient inverse method and a Genetic Algorithm are used to find all the model parameters from the total radiative heat source <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>r</mi></mrow></msub></math></span> computed with the Line-by-Line (LBL) method based on HITEMP2010 data. It can be noted that <span><math><msub><mrow><mi>κ</mi></mrow><mrow><mi>p</mi><mo>,</mo><mi>k</mi></mrow></msub></math></span> depend highly on <span><math><mi>T</mi></math></span> and the <span><math><msub><mrow><mi>a</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> depend weakly on <span><math><mi>T</mi></math></span> whereas in the standard WSGG model, <span><math><msub><mrow><mi>κ</mi></mrow><mrow><mi>p</mi><mo>,</mo><mi>k</mi></mrow></msub></math></span> are usually constants and <span><math><msub><mrow><mi>a</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> depend highly on <span><math><mi>T</mi></math></span>. It is shown, on 92 selected 1D cases of CO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>-H<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>O mixtures (at atmospheric pressure with a mole fraction ratio of 2) within the temperature range [300 K; 3,000 K], that the maximum relative errors on <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>r</mi></mrow></msub></math></span> for the UWSGG model with <span><math><mrow><mi>K</mi><mo>=</mo><mn>6</mn></mrow></math></span> do not exceed 7.5 %. Conversely, for the standard WSGG model by Dorigon et al. (2013) on the first 72 cases (<span><math><mrow><mi>T</mi><mo>&gt;</mo></mrow></math></span> 2500 K in the other cases and the model by Dorigon is limited to 2500 K), these errors vary up to 20.4 % (seven cases have errors higher than 15.0 %, fourteen cases have errors between 10.0 % and 15.0 % and, five cases have errors between 7.5 % and 10.0 %). The accuracy of the total radiative heat flux is also improved with the UWSGG model.</div></div>","PeriodicalId":336,"journal":{"name":"International Journal of Heat and Mass Transfer","volume":"241 ","pages":"Article 126713"},"PeriodicalIF":5.0000,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Heat and Mass Transfer","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0017931025000547","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

A unified gas radiation model over the entire temperature range — the Unified model based on the Weighted-Sum-of-Gray-Gases (UWSGG) is proposed, which improves the accuracy of the standard WSGG model. The pressure absorption coefficient κp,1 and the weighting factor a1 are approximated with quadratic polynomial functions of the temperature T. For K gray gases and 2kK, ak are determined by translation from a1 and κp,k by translation and multiplicative factors from κp,1. An efficient inverse method and a Genetic Algorithm are used to find all the model parameters from the total radiative heat source Sr computed with the Line-by-Line (LBL) method based on HITEMP2010 data. It can be noted that κp,k depend highly on T and the ak depend weakly on T whereas in the standard WSGG model, κp,k are usually constants and ak depend highly on T. It is shown, on 92 selected 1D cases of CO2-H2O mixtures (at atmospheric pressure with a mole fraction ratio of 2) within the temperature range [300 K; 3,000 K], that the maximum relative errors on Sr for the UWSGG model with K=6 do not exceed 7.5 %. Conversely, for the standard WSGG model by Dorigon et al. (2013) on the first 72 cases (T> 2500 K in the other cases and the model by Dorigon is limited to 2500 K), these errors vary up to 20.4 % (seven cases have errors higher than 15.0 %, fourteen cases have errors between 10.0 % and 15.0 % and, five cases have errors between 7.5 % and 10.0 %). The accuracy of the total radiative heat flux is also improved with the UWSGG model.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
10.30
自引率
13.50%
发文量
1319
审稿时长
41 days
期刊介绍: International Journal of Heat and Mass Transfer is the vehicle for the exchange of basic ideas in heat and mass transfer between research workers and engineers throughout the world. It focuses on both analytical and experimental research, with an emphasis on contributions which increase the basic understanding of transfer processes and their application to engineering problems. Topics include: -New methods of measuring and/or correlating transport-property data -Energy engineering -Environmental applications of heat and/or mass transfer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信