Elucidating hierarchical microstructures in high entropy superalloys: An integrated multiscale study

IF 4.8 2区 材料科学 Q1 MATERIALS SCIENCE, CHARACTERIZATION & TESTING
Erika Zaiser , Andrea Fantin , Anna M. Manzoni , René Hesse , Daniel M. Többens , Wei-Che Hsu , Hideyuki Murakami , An-Chou Yeh , Michael J. Pavel , Mark L. Weaver , Huihui Zhu , Yuan Wu , Florian Vogel
{"title":"Elucidating hierarchical microstructures in high entropy superalloys: An integrated multiscale study","authors":"Erika Zaiser ,&nbsp;Andrea Fantin ,&nbsp;Anna M. Manzoni ,&nbsp;René Hesse ,&nbsp;Daniel M. Többens ,&nbsp;Wei-Che Hsu ,&nbsp;Hideyuki Murakami ,&nbsp;An-Chou Yeh ,&nbsp;Michael J. Pavel ,&nbsp;Mark L. Weaver ,&nbsp;Huihui Zhu ,&nbsp;Yuan Wu ,&nbsp;Florian Vogel","doi":"10.1016/j.matchar.2024.114642","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, we examine a high entropy superalloy (HESA-Y1: Ni<sub>49.37</sub>Co<sub>20</sub>Cr<sub>7</sub>Fe<sub>4</sub>Al<sub>11.6</sub>Ti<sub>6</sub>Re<sub>1</sub>Mo<sub>0.5</sub>W<sub>0.5</sub>Hf<sub>0.03</sub> at%), focusing on hierarchical microstructure formation and its effects on mechanical properties. Thermodynamic modeling using Thermo-Calc predicts equilibrium phase fractions, compositions, and transition temperatures, which are validated by experimental data from differential scanning calorimetry (DSC). Transmission electron microscopy (TEM) reveals that secondary aging induces nanometer-sized γ particles within γ' precipitates, forming a hierarchical γ/γ' microstructure. Atom probe tomography (APT) confirms supersaturation of γ' precipitates with γ-forming elements (Co, Cr, Fe), driving γ particle formation, and measures interfacial widths between γ' and γ phases. Partitioning coefficients derived from APT align with Thermo-Calc predictions for most elements. Vickers microhardness testing shows an increase of about 50 HV in the hierarchical microstructure compared to the conventional one. <em>In situ</em> synchrotron X-ray diffraction (XRD) from 25 to 750 °C determines a small, negative lattice misfit δ between γ and γ' phases, suggesting enhanced microstructural stability, consistent with Thermo-Calc calculations. Our methodological approach enables measurement of the unconstrained lattice parameter of phase-extracted γ' in a single-crystal XRD setup. Due to their small size and low volume fraction, γ particles do not produce distinct reflections in the X-ray diffractogram. Elucidating hierarchical microstructures across multiple scales, we establish that the presence of Re and Hf and controlled aging processes lead to enhanced mechanical properties, offering valuable insights for the design of advanced high entropy superalloys.</div></div>","PeriodicalId":18727,"journal":{"name":"Materials Characterization","volume":"220 ","pages":"Article 114642"},"PeriodicalIF":4.8000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Characterization","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1044580324010234","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we examine a high entropy superalloy (HESA-Y1: Ni49.37Co20Cr7Fe4Al11.6Ti6Re1Mo0.5W0.5Hf0.03 at%), focusing on hierarchical microstructure formation and its effects on mechanical properties. Thermodynamic modeling using Thermo-Calc predicts equilibrium phase fractions, compositions, and transition temperatures, which are validated by experimental data from differential scanning calorimetry (DSC). Transmission electron microscopy (TEM) reveals that secondary aging induces nanometer-sized γ particles within γ' precipitates, forming a hierarchical γ/γ' microstructure. Atom probe tomography (APT) confirms supersaturation of γ' precipitates with γ-forming elements (Co, Cr, Fe), driving γ particle formation, and measures interfacial widths between γ' and γ phases. Partitioning coefficients derived from APT align with Thermo-Calc predictions for most elements. Vickers microhardness testing shows an increase of about 50 HV in the hierarchical microstructure compared to the conventional one. In situ synchrotron X-ray diffraction (XRD) from 25 to 750 °C determines a small, negative lattice misfit δ between γ and γ' phases, suggesting enhanced microstructural stability, consistent with Thermo-Calc calculations. Our methodological approach enables measurement of the unconstrained lattice parameter of phase-extracted γ' in a single-crystal XRD setup. Due to their small size and low volume fraction, γ particles do not produce distinct reflections in the X-ray diffractogram. Elucidating hierarchical microstructures across multiple scales, we establish that the presence of Re and Hf and controlled aging processes lead to enhanced mechanical properties, offering valuable insights for the design of advanced high entropy superalloys.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Characterization
Materials Characterization 工程技术-材料科学:表征与测试
CiteScore
7.60
自引率
8.50%
发文量
746
审稿时长
36 days
期刊介绍: Materials Characterization features original articles and state-of-the-art reviews on theoretical and practical aspects of the structure and behaviour of materials. The Journal focuses on all characterization techniques, including all forms of microscopy (light, electron, acoustic, etc.,) and analysis (especially microanalysis and surface analytical techniques). Developments in both this wide range of techniques and their application to the quantification of the microstructure of materials are essential facets of the Journal. The Journal provides the Materials Scientist/Engineer with up-to-date information on many types of materials with an underlying theme of explaining the behavior of materials using novel approaches. Materials covered by the journal include: Metals & Alloys Ceramics Nanomaterials Biomedical materials Optical materials Composites Natural Materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信