Lattice thermal conductivity of 8-16-4(sun)-graphyne from reverse nonequilibrium molecular dynamics simulations

IF 5 2区 工程技术 Q1 ENGINEERING, MECHANICAL
Isaac M. Felix , Raphael M. Tromer , Leonardo D. Machado , Douglas S. Galvão , Luiz A. Ribeiro Jr. , Marcelo L. Pereira Jr.
{"title":"Lattice thermal conductivity of 8-16-4(sun)-graphyne from reverse nonequilibrium molecular dynamics simulations","authors":"Isaac M. Felix ,&nbsp;Raphael M. Tromer ,&nbsp;Leonardo D. Machado ,&nbsp;Douglas S. Galvão ,&nbsp;Luiz A. Ribeiro Jr. ,&nbsp;Marcelo L. Pereira Jr.","doi":"10.1016/j.ijheatmasstransfer.2025.126746","DOIUrl":null,"url":null,"abstract":"<div><div>The thermal conductivity of two-dimensional (2D) materials is critical in determining their suitability for several applications, from electronics to thermal management. In this study, we have used Molecular Dynamics (MD) simulations to investigate the thermal conductivity and phononic properties of 8-16-4(Sun)-Graphyne, a recently proposed 2D carbon allotrope. The thermal conductivity was estimated using reverse non-equilibrium MD simulations following the Müller–Plathe approach, revealing a strong dependence on system size. Phonon dispersion calculations confirm the stability of Sun-GY while also showing a significant decrease in thermal conductivity compared to graphene. This decrease is attributed to acetylenic bonds, which enhance phonon scattering. Spectral analysis further revealed that Sun-GY exhibits lower phonon group velocities and increased phonon scattering, mainly due to interactions between acoustic and optical modes. Sun-GY presents an intrinsic thermal conductivity of approximately 24.6 W/mK, much lower than graphene, making it a promising candidate for applications that require materials with reduced thermal transport properties.</div></div>","PeriodicalId":336,"journal":{"name":"International Journal of Heat and Mass Transfer","volume":"241 ","pages":"Article 126746"},"PeriodicalIF":5.0000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Heat and Mass Transfer","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0017931025000870","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The thermal conductivity of two-dimensional (2D) materials is critical in determining their suitability for several applications, from electronics to thermal management. In this study, we have used Molecular Dynamics (MD) simulations to investigate the thermal conductivity and phononic properties of 8-16-4(Sun)-Graphyne, a recently proposed 2D carbon allotrope. The thermal conductivity was estimated using reverse non-equilibrium MD simulations following the Müller–Plathe approach, revealing a strong dependence on system size. Phonon dispersion calculations confirm the stability of Sun-GY while also showing a significant decrease in thermal conductivity compared to graphene. This decrease is attributed to acetylenic bonds, which enhance phonon scattering. Spectral analysis further revealed that Sun-GY exhibits lower phonon group velocities and increased phonon scattering, mainly due to interactions between acoustic and optical modes. Sun-GY presents an intrinsic thermal conductivity of approximately 24.6 W/mK, much lower than graphene, making it a promising candidate for applications that require materials with reduced thermal transport properties.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
10.30
自引率
13.50%
发文量
1319
审稿时长
41 days
期刊介绍: International Journal of Heat and Mass Transfer is the vehicle for the exchange of basic ideas in heat and mass transfer between research workers and engineers throughout the world. It focuses on both analytical and experimental research, with an emphasis on contributions which increase the basic understanding of transfer processes and their application to engineering problems. Topics include: -New methods of measuring and/or correlating transport-property data -Energy engineering -Environmental applications of heat and/or mass transfer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信