Plasmonic Luneburg and Eaton lenses for terahertz spoof surface plasmon polaritons

IF 2.2 3区 物理与天体物理 Q2 OPTICS
Zhanyi Gao , Zhaoxia Su , Jingwen He , Maixia Fu , Xing Li , Sen Wang
{"title":"Plasmonic Luneburg and Eaton lenses for terahertz spoof surface plasmon polaritons","authors":"Zhanyi Gao ,&nbsp;Zhaoxia Su ,&nbsp;Jingwen He ,&nbsp;Maixia Fu ,&nbsp;Xing Li ,&nbsp;Sen Wang","doi":"10.1016/j.optcom.2025.131476","DOIUrl":null,"url":null,"abstract":"<div><div>Combining the principle of gradient index optics and spoof surface plasmon polaritons (SSPPs), plasmonic Luneburg and Eaton lenses in the terahertz frequency range are demonstrated and dynamical modulation of SSPPs field is also realized. The lenses are composed of subwavelength metallic pillars. By analyzing the dispersion characteristics of the pillars, the relationship between the effective mode index and the width of the pillars is obtained. The desired index distribution of the lenses can be achieved by arranging metallic pillars with different widths. For the Luneburg lens, the SSPPs field can be effectively focused to a point around perimeter of the lens with a bandwidth of 100 GHz. By changing the incident direction of THz beam, the SSPPs fields are imprinted with oblique phases and thus can be dynamically coupled to different waveguides. Conversely, the plasmonic Luneburg lens can transform a SSPPs point source into a SSPPs plane wave. Moreover, because of the spin-dependent spiral phase introduced by the circularly polarized THz beam, the propagation direction can be adjusted by changing the polarization state of the beam. Similarly, plasmonic Eaton lenses are also designed to realize the 30 and 60° bending of the SSPPs plane wave. This study may advance the development of miniaturized THz devices and on-chip THz communications.</div></div>","PeriodicalId":19586,"journal":{"name":"Optics Communications","volume":"577 ","pages":"Article 131476"},"PeriodicalIF":2.2000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics Communications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0030401825000045","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Combining the principle of gradient index optics and spoof surface plasmon polaritons (SSPPs), plasmonic Luneburg and Eaton lenses in the terahertz frequency range are demonstrated and dynamical modulation of SSPPs field is also realized. The lenses are composed of subwavelength metallic pillars. By analyzing the dispersion characteristics of the pillars, the relationship between the effective mode index and the width of the pillars is obtained. The desired index distribution of the lenses can be achieved by arranging metallic pillars with different widths. For the Luneburg lens, the SSPPs field can be effectively focused to a point around perimeter of the lens with a bandwidth of 100 GHz. By changing the incident direction of THz beam, the SSPPs fields are imprinted with oblique phases and thus can be dynamically coupled to different waveguides. Conversely, the plasmonic Luneburg lens can transform a SSPPs point source into a SSPPs plane wave. Moreover, because of the spin-dependent spiral phase introduced by the circularly polarized THz beam, the propagation direction can be adjusted by changing the polarization state of the beam. Similarly, plasmonic Eaton lenses are also designed to realize the 30 and 60° bending of the SSPPs plane wave. This study may advance the development of miniaturized THz devices and on-chip THz communications.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Optics Communications
Optics Communications 物理-光学
CiteScore
5.10
自引率
8.30%
发文量
681
审稿时长
38 days
期刊介绍: Optics Communications invites original and timely contributions containing new results in various fields of optics and photonics. The journal considers theoretical and experimental research in areas ranging from the fundamental properties of light to technological applications. Topics covered include classical and quantum optics, optical physics and light-matter interactions, lasers, imaging, guided-wave optics and optical information processing. Manuscripts should offer clear evidence of novelty and significance. Papers concentrating on mathematical and computational issues, with limited connection to optics, are not suitable for publication in the Journal. Similarly, small technical advances, or papers concerned only with engineering applications or issues of materials science fall outside the journal scope.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信