Yu-Ran Wang , Peng-Jie Wang , Le-Yan Tao , Lin-Lin Hu , Qiang-Qiang Liu , Shao-Chen Sun , Jing-Xi Wei , Yue Wang
{"title":"Loss of KIFC1 activity induces spindle instability and actin defects during porcine oocyte maturation","authors":"Yu-Ran Wang , Peng-Jie Wang , Le-Yan Tao , Lin-Lin Hu , Qiang-Qiang Liu , Shao-Chen Sun , Jing-Xi Wei , Yue Wang","doi":"10.1016/j.theriogenology.2025.01.012","DOIUrl":null,"url":null,"abstract":"<div><div>KIFC1 is a motor protein of the Kinesin family and it is involved in spindle apparatus assembly, chromosome arrangement, and microfilament-mediated biological processes in mitosis. However, the specific function of KIFC1 in pig oocytes remains unclear. Here, in order to explore the function of KIFC1 in porcine oocytes, the AZ82 inhibitor was used to inhibit the activity of KIFC1. Our results showed when KIFC1 was inhibited, the polar body extrusion rate was obviously decreased, indicating that KIFC1 plays a crucial role in porcine oocytes. We next measured the spindle structure and chromosome arrangement via immunofluorescent staining and found both the rates of abnormal spindle and chromosome disorder increased significantly. By further analyzing the causes of the abnormal spindle, we found the acetylation of tubulin was disrupted. In addition, we also found the spindle position was impaired after KIFC1 inhibition, declaring the spindle migration was affected. Further analysis found cortex actin decreased and cytoplasmic actin increased after KIFC1 inhibition. In summary, we found that KIFC1 played a critical role in porcine oocytes maturation by controlling spindle apparatus via mediating the acetylation of microtubule and regulating the spindle migration via affecting actin dynamics.</div></div>","PeriodicalId":23131,"journal":{"name":"Theriogenology","volume":"235 ","pages":"Pages 254-261"},"PeriodicalIF":2.4000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theriogenology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0093691X25000184","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"REPRODUCTIVE BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
KIFC1 is a motor protein of the Kinesin family and it is involved in spindle apparatus assembly, chromosome arrangement, and microfilament-mediated biological processes in mitosis. However, the specific function of KIFC1 in pig oocytes remains unclear. Here, in order to explore the function of KIFC1 in porcine oocytes, the AZ82 inhibitor was used to inhibit the activity of KIFC1. Our results showed when KIFC1 was inhibited, the polar body extrusion rate was obviously decreased, indicating that KIFC1 plays a crucial role in porcine oocytes. We next measured the spindle structure and chromosome arrangement via immunofluorescent staining and found both the rates of abnormal spindle and chromosome disorder increased significantly. By further analyzing the causes of the abnormal spindle, we found the acetylation of tubulin was disrupted. In addition, we also found the spindle position was impaired after KIFC1 inhibition, declaring the spindle migration was affected. Further analysis found cortex actin decreased and cytoplasmic actin increased after KIFC1 inhibition. In summary, we found that KIFC1 played a critical role in porcine oocytes maturation by controlling spindle apparatus via mediating the acetylation of microtubule and regulating the spindle migration via affecting actin dynamics.
期刊介绍:
Theriogenology provides an international forum for researchers, clinicians, and industry professionals in animal reproductive biology. This acclaimed journal publishes articles on a wide range of topics in reproductive and developmental biology, of domestic mammal, avian, and aquatic species as well as wild species which are the object of veterinary care in research or conservation programs.