III-nitride MQW-based optoelectronic sensors for multifunctional environmental monitoring

Chip Pub Date : 2024-12-01 DOI:10.1016/j.chip.2024.100113
Xumin Gao , Dongmei Wu , Tianlong Xie , Jialei Yuan , Mingyuan Xie , Yongjin Wang , Haitao Zhao , Gangyi Zhu , Zheng Shi
{"title":"III-nitride MQW-based optoelectronic sensors for multifunctional environmental monitoring","authors":"Xumin Gao ,&nbsp;Dongmei Wu ,&nbsp;Tianlong Xie ,&nbsp;Jialei Yuan ,&nbsp;Mingyuan Xie ,&nbsp;Yongjin Wang ,&nbsp;Haitao Zhao ,&nbsp;Gangyi Zhu ,&nbsp;Zheng Shi","doi":"10.1016/j.chip.2024.100113","DOIUrl":null,"url":null,"abstract":"<div><div>This work presents an integrated multi-quantum well (MQW) optoelectronic sensor leveraging III-nitride materials for multifunctionality on a monolithic chip. The sensor was fabricated using standard microfabrication techniques and adopted the identical InGaN/GaN MQWs, which enables simultaneous emission and detection. The sensor is featured with a double concentric circle structure which supports both on-chip and off-chip detection mechanisms, being capable of detecting environmental parameters like rotational speed, proximity, and sucrose concentration. It exhibits stable photocurrent response to rotational speed up to 8000 rpm, a 3 cm vertical detection range, and a linear response with 3.9 nA/% sensitivity to changes in sucrose concentration, which demonstrates the potential for diverse applications in industrial and biomedical fields.</div></div>","PeriodicalId":100244,"journal":{"name":"Chip","volume":"3 4","pages":"Article 100113"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chip","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2709472324000315","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This work presents an integrated multi-quantum well (MQW) optoelectronic sensor leveraging III-nitride materials for multifunctionality on a monolithic chip. The sensor was fabricated using standard microfabrication techniques and adopted the identical InGaN/GaN MQWs, which enables simultaneous emission and detection. The sensor is featured with a double concentric circle structure which supports both on-chip and off-chip detection mechanisms, being capable of detecting environmental parameters like rotational speed, proximity, and sucrose concentration. It exhibits stable photocurrent response to rotational speed up to 8000 rpm, a 3 cm vertical detection range, and a linear response with 3.9 nA/% sensitivity to changes in sucrose concentration, which demonstrates the potential for diverse applications in industrial and biomedical fields.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信