A versatile optoelectronic device for ultrasensitive negative-positive pressure sensing applications

Chip Pub Date : 2024-12-01 DOI:10.1016/j.chip.2024.100116
Xiaoshuai An , Sizhe Gui , Yingxin Li , Zhiqin Chu , Kwai Hei Li
{"title":"A versatile optoelectronic device for ultrasensitive negative-positive pressure sensing applications","authors":"Xiaoshuai An ,&nbsp;Sizhe Gui ,&nbsp;Yingxin Li ,&nbsp;Zhiqin Chu ,&nbsp;Kwai Hei Li","doi":"10.1016/j.chip.2024.100116","DOIUrl":null,"url":null,"abstract":"<div><div>A versatile optoelectronic device with ultrasensitive negative-positive pressure sensing capabilities, which is integrated with a wireless monitoring system, was fabricated and demonstrated in the current work. The device comprises a monolithic GaN chip with a polydimethylsiloxane cavity and nanograting, which effectively transduces pressure stimuli into optical changes detected by the GaN chip. The developed device exhibits an ultra-low detection limit for a mass of 0.03 mg, a pressure of 2.94 Pa, and a water depth of 0.3 mm, with a detection range of −100 kPa to 30.5 kPa and high stability. The versatility of the device is demonstrated by its ability to monitor heart pulse, grip strength, and respiration. Its integration with a wireless data transmission system enables real-time monitoring of human activity and heart rate underwater, making it suitable for precise measurements in various practical applications.</div></div>","PeriodicalId":100244,"journal":{"name":"Chip","volume":"3 4","pages":"Article 100116"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chip","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2709472324000340","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A versatile optoelectronic device with ultrasensitive negative-positive pressure sensing capabilities, which is integrated with a wireless monitoring system, was fabricated and demonstrated in the current work. The device comprises a monolithic GaN chip with a polydimethylsiloxane cavity and nanograting, which effectively transduces pressure stimuli into optical changes detected by the GaN chip. The developed device exhibits an ultra-low detection limit for a mass of 0.03 mg, a pressure of 2.94 Pa, and a water depth of 0.3 mm, with a detection range of −100 kPa to 30.5 kPa and high stability. The versatility of the device is demonstrated by its ability to monitor heart pulse, grip strength, and respiration. Its integration with a wireless data transmission system enables real-time monitoring of human activity and heart rate underwater, making it suitable for precise measurements in various practical applications.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信