Two-dimensionally cultured functional hepatocytes generated from human induced pluripotent stem cell-derived hepatic organoids for pharmaceutical research

IF 12.8 1区 医学 Q1 ENGINEERING, BIOMEDICAL
Jumpei Inui , Yukiko Ueyama-Toba , Chiharu Imamura , Wakana Nagai , Rei Asano , Hiroyuki Mizuguchi
{"title":"Two-dimensionally cultured functional hepatocytes generated from human induced pluripotent stem cell-derived hepatic organoids for pharmaceutical research","authors":"Jumpei Inui ,&nbsp;Yukiko Ueyama-Toba ,&nbsp;Chiharu Imamura ,&nbsp;Wakana Nagai ,&nbsp;Rei Asano ,&nbsp;Hiroyuki Mizuguchi","doi":"10.1016/j.biomaterials.2025.123148","DOIUrl":null,"url":null,"abstract":"<div><div>Human induced pluripotent stem (iPS) cell-derived hepatocyte-like cells (HLCs) are expected to replace primary human hepatocytes (PHHs) as a new stable source of hepatocytes for pharmaceutical research. However, HLCs have lower hepatic functions than PHHs, require a long time for differentiation and cannot be prepared in large quantities because they do not proliferate after their terminal differentiation. To overcome these problems, we here established hepatic organoids (iHOs) from HLCs. We then showed that the iHOs could proliferate approximately 10<sup>5</sup>-fold by more than 3 passages and expressed most hepatic genes more highly than HLCs. In addition, to enable their widespread use for in vitro drug discovery research, we developed a two-dimensional culture protocol for iHOs. Two-dimensionally cultured iHOs (iHO-Heps) expressed most of the major hepatocyte marker genes at much higher levels than HLCs, iHOs, and even PHHs. The iHO-Heps exhibited glycogen storage capacity, the capacity to uptake and release indocyanine green (ICG), albumin and urea secretion, and the capacity for bile canaliculi formation. Importantly, the iHO-Heps had the activity of major drug-metabolizing enzymes and responded to hepatotoxic drugs, much like PHHs. Thus, iHO-Heps overcome the limitations of the current models and promise to provide robust and reproducible pharmaceutical assays.</div></div>","PeriodicalId":254,"journal":{"name":"Biomaterials","volume":"318 ","pages":"Article 123148"},"PeriodicalIF":12.8000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142961225000675","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Human induced pluripotent stem (iPS) cell-derived hepatocyte-like cells (HLCs) are expected to replace primary human hepatocytes (PHHs) as a new stable source of hepatocytes for pharmaceutical research. However, HLCs have lower hepatic functions than PHHs, require a long time for differentiation and cannot be prepared in large quantities because they do not proliferate after their terminal differentiation. To overcome these problems, we here established hepatic organoids (iHOs) from HLCs. We then showed that the iHOs could proliferate approximately 105-fold by more than 3 passages and expressed most hepatic genes more highly than HLCs. In addition, to enable their widespread use for in vitro drug discovery research, we developed a two-dimensional culture protocol for iHOs. Two-dimensionally cultured iHOs (iHO-Heps) expressed most of the major hepatocyte marker genes at much higher levels than HLCs, iHOs, and even PHHs. The iHO-Heps exhibited glycogen storage capacity, the capacity to uptake and release indocyanine green (ICG), albumin and urea secretion, and the capacity for bile canaliculi formation. Importantly, the iHO-Heps had the activity of major drug-metabolizing enzymes and responded to hepatotoxic drugs, much like PHHs. Thus, iHO-Heps overcome the limitations of the current models and promise to provide robust and reproducible pharmaceutical assays.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomaterials
Biomaterials 工程技术-材料科学:生物材料
CiteScore
26.00
自引率
2.90%
发文量
565
审稿时长
46 days
期刊介绍: Biomaterials is an international journal covering the science and clinical application of biomaterials. A biomaterial is now defined as a substance that has been engineered to take a form which, alone or as part of a complex system, is used to direct, by control of interactions with components of living systems, the course of any therapeutic or diagnostic procedure. It is the aim of the journal to provide a peer-reviewed forum for the publication of original papers and authoritative review and opinion papers dealing with the most important issues facing the use of biomaterials in clinical practice. The scope of the journal covers the wide range of physical, biological and chemical sciences that underpin the design of biomaterials and the clinical disciplines in which they are used. These sciences include polymer synthesis and characterization, drug and gene vector design, the biology of the host response, immunology and toxicology and self assembly at the nanoscale. Clinical applications include the therapies of medical technology and regenerative medicine in all clinical disciplines, and diagnostic systems that reply on innovative contrast and sensing agents. The journal is relevant to areas such as cancer diagnosis and therapy, implantable devices, drug delivery systems, gene vectors, bionanotechnology and tissue engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信