Multi-laboratory validation of a modified real-time PCR assay (Mit1C) for the detection of Cyclospora cayetanensis in fresh produce

IF 4.5 1区 农林科学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Sonia Almeria , John Grocholl , Jeremi Mullins , Mauricio Durigan , Laura Ewing-Peeples , Ellie Lauren Rogers , Kirsten Hirneisen , Shauna Madson , Shizhen Steven Wang
{"title":"Multi-laboratory validation of a modified real-time PCR assay (Mit1C) for the detection of Cyclospora cayetanensis in fresh produce","authors":"Sonia Almeria ,&nbsp;John Grocholl ,&nbsp;Jeremi Mullins ,&nbsp;Mauricio Durigan ,&nbsp;Laura Ewing-Peeples ,&nbsp;Ellie Lauren Rogers ,&nbsp;Kirsten Hirneisen ,&nbsp;Shauna Madson ,&nbsp;Shizhen Steven Wang","doi":"10.1016/j.fm.2025.104727","DOIUrl":null,"url":null,"abstract":"<div><div><em>Cyclospora cayetanensis</em> is a foodborne protozoan parasite that causes the human diarrheal disease cyclosporiasis. Recently, the US FDA developed a modified real-time PCR method based on a specific mitochondrial target gene (Mit1C) to detect <em>C. cayetanensis</em> in fresh produce. The method was validated by single laboratory validation (SLV) studies in Romaine lettuce, cilantro, and raspberries. The present study aimed to evaluate the performance of the new real-time Mit1C (Mit1C qPCR) method by comparing it with the current BAM Chapter 19b qPCR (18S qPCR) as the reference method for the detection of the protozoan parasite C. cayetanensis in fresh produce in a multi-laboratory validation (MLV) setting with the participation of 13 collaborating laboratories. Each laboratory analyzed twenty-four blind-coded Romaine lettuce DNA test samples that included: two unseeded samples, three samples seeded with five oocysts, and one sample seeded with 200 oocysts in the first round and five unseeded samples, eight samples seeded with five oocysts, and five samples seeded with 200 oocysts in the second round. The overall detection rates across laboratories for Romaine lettuce samples inoculated with 200 and 5 oocysts and un-inoculated samples were 100% (78/78), 69.23% (99/143), and 1.1% (1/91), respectively, for Mit1C qPCR, and 100% (78/78), 61.54% (88/143) and 0% (0/91), respectively, for 18S qPCR. The relative level of detection (RLOD = LOD<sub>50</sub>, <sub>Mit1C</sub>/LOD<sub>50</sub>, <sub>18S</sub>) was 0.81 with a 95% confidence interval (0.600, 1.095), which included 1. Thus, Mit1C qPCR and 18S qPCR had statistically similar levels of detection. Mit1C qPCR was highly reproducible as the between-laboratory variance in the test results was nearly zero (0) and showed a high specificity at 98.9%. In conclusion, this study demonstrated that the new, more specific Mit1C qPCR method is an effective alternative analytical tool for detection of <em>C. cayetanensis</em> in fresh produce.</div></div>","PeriodicalId":12399,"journal":{"name":"Food microbiology","volume":"128 ","pages":"Article 104727"},"PeriodicalIF":4.5000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food microbiology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0740002025000073","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Cyclospora cayetanensis is a foodborne protozoan parasite that causes the human diarrheal disease cyclosporiasis. Recently, the US FDA developed a modified real-time PCR method based on a specific mitochondrial target gene (Mit1C) to detect C. cayetanensis in fresh produce. The method was validated by single laboratory validation (SLV) studies in Romaine lettuce, cilantro, and raspberries. The present study aimed to evaluate the performance of the new real-time Mit1C (Mit1C qPCR) method by comparing it with the current BAM Chapter 19b qPCR (18S qPCR) as the reference method for the detection of the protozoan parasite C. cayetanensis in fresh produce in a multi-laboratory validation (MLV) setting with the participation of 13 collaborating laboratories. Each laboratory analyzed twenty-four blind-coded Romaine lettuce DNA test samples that included: two unseeded samples, three samples seeded with five oocysts, and one sample seeded with 200 oocysts in the first round and five unseeded samples, eight samples seeded with five oocysts, and five samples seeded with 200 oocysts in the second round. The overall detection rates across laboratories for Romaine lettuce samples inoculated with 200 and 5 oocysts and un-inoculated samples were 100% (78/78), 69.23% (99/143), and 1.1% (1/91), respectively, for Mit1C qPCR, and 100% (78/78), 61.54% (88/143) and 0% (0/91), respectively, for 18S qPCR. The relative level of detection (RLOD = LOD50, Mit1C/LOD50, 18S) was 0.81 with a 95% confidence interval (0.600, 1.095), which included 1. Thus, Mit1C qPCR and 18S qPCR had statistically similar levels of detection. Mit1C qPCR was highly reproducible as the between-laboratory variance in the test results was nearly zero (0) and showed a high specificity at 98.9%. In conclusion, this study demonstrated that the new, more specific Mit1C qPCR method is an effective alternative analytical tool for detection of C. cayetanensis in fresh produce.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Food microbiology
Food microbiology 工程技术-生物工程与应用微生物
CiteScore
11.30
自引率
3.80%
发文量
179
审稿时长
44 days
期刊介绍: Food Microbiology publishes original research articles, short communications, review papers, letters, news items and book reviews dealing with all aspects of the microbiology of foods. The editors aim to publish manuscripts of the highest quality which are both relevant and applicable to the broad field covered by the journal. Studies must be novel, have a clear connection to food microbiology, and be of general interest to the international community of food microbiologists. The editors make every effort to ensure rapid and fair reviews, resulting in timely publication of accepted manuscripts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信