Etching of tungsten via a combination of thermal oxide formation and wet-chemical oxide dissolution

IF 2.6 4区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Antoine Pacco , Teppei Nakano , Jana Loyo Prado , Ju-Geng Lai , Hikaru Kawarazaki , Efrain Altamirano Sanchez
{"title":"Etching of tungsten via a combination of thermal oxide formation and wet-chemical oxide dissolution","authors":"Antoine Pacco ,&nbsp;Teppei Nakano ,&nbsp;Jana Loyo Prado ,&nbsp;Ju-Geng Lai ,&nbsp;Hikaru Kawarazaki ,&nbsp;Efrain Altamirano Sanchez","doi":"10.1016/j.mee.2024.112304","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, an etching process for the controlled and partial recess of tungsten metal was developed. The process comprises two steps which can be repeated: a thermal oxidation of the tungsten followed by the oxide dissolution in an acidic or basic solution. During the first step the W metal is heated in the presence of O<sub>3</sub> gas in the temperature range of 210–290 °C forming a WO<sub>3</sub> oxide. During the second step this thermally grown oxide is then selectively dissolved towards the underlying W metal. Both NH<sub>4</sub>OH and H<sub>3</sub>PO<sub>4</sub> were down selected as the best wet chemical dissolution agents in terms of dissolution rate and selectivity. By utilizing this combined thermal/wet-chemical cyclic etch process, the total W recess can be tuned on the nanoscale based on oxidation temperature and total number of cycles. This process was then applied for the deep recess (∼180 nm) of narrow (∼20 nm) tungsten trenches for the fabrication of the bottom contacts in complementary field-effect transistors (CFET).</div></div>","PeriodicalId":18557,"journal":{"name":"Microelectronic Engineering","volume":"297 ","pages":"Article 112304"},"PeriodicalIF":2.6000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microelectronic Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167931724001734","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, an etching process for the controlled and partial recess of tungsten metal was developed. The process comprises two steps which can be repeated: a thermal oxidation of the tungsten followed by the oxide dissolution in an acidic or basic solution. During the first step the W metal is heated in the presence of O3 gas in the temperature range of 210–290 °C forming a WO3 oxide. During the second step this thermally grown oxide is then selectively dissolved towards the underlying W metal. Both NH4OH and H3PO4 were down selected as the best wet chemical dissolution agents in terms of dissolution rate and selectivity. By utilizing this combined thermal/wet-chemical cyclic etch process, the total W recess can be tuned on the nanoscale based on oxidation temperature and total number of cycles. This process was then applied for the deep recess (∼180 nm) of narrow (∼20 nm) tungsten trenches for the fabrication of the bottom contacts in complementary field-effect transistors (CFET).

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Microelectronic Engineering
Microelectronic Engineering 工程技术-工程:电子与电气
CiteScore
5.30
自引率
4.30%
发文量
131
审稿时长
29 days
期刊介绍: Microelectronic Engineering is the premier nanoprocessing, and nanotechnology journal focusing on fabrication of electronic, photonic, bioelectronic, electromechanic and fluidic devices and systems, and their applications in the broad areas of electronics, photonics, energy, life sciences, and environment. It covers also the expanding interdisciplinary field of "more than Moore" and "beyond Moore" integrated nanoelectronics / photonics and micro-/nano-/bio-systems. Through its unique mixture of peer-reviewed articles, reviews, accelerated publications, short and Technical notes, and the latest research news on key developments, Microelectronic Engineering provides comprehensive coverage of this exciting, interdisciplinary and dynamic new field for researchers in academia and professionals in industry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信