Some uniformization problems for a fourth order conformal curvature

IF 1.7 2区 数学 Q1 MATHEMATICS
Sanghoon Lee
{"title":"Some uniformization problems for a fourth order conformal curvature","authors":"Sanghoon Lee","doi":"10.1016/j.jfa.2024.110791","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we establish the existence of conformal deformations that uniformize fourth order curvature on 4-dimensional Riemannian manifolds with positive conformal invariants. Specifically, we prove that any closed, compact Riemannian manifold with positive Yamabe invariant and total <em>Q</em>-curvature can be conformally deformed into a metric with positive scalar curvature and constant <em>Q</em>-curvature. For a Riemannian manifold with umbilic boundary, positive first Yamabe invariant and total <span><math><mo>(</mo><mi>Q</mi><mo>,</mo><mi>T</mi><mo>)</mo></math></span>-curvature, it is possible to deform it into two types of Riemannian manifolds with totally geodesic boundary and positive scalar curvature. The first type satisfies <span><math><mi>Q</mi><mo>≡</mo><mtext>constant</mtext><mo>,</mo><mi>T</mi><mo>≡</mo><mn>0</mn></math></span> while the second type satisfies <span><math><mi>Q</mi><mo>≡</mo><mn>0</mn><mo>,</mo><mi>T</mi><mo>≡</mo><mtext>constant</mtext></math></span>.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"288 5","pages":"Article 110791"},"PeriodicalIF":1.7000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123624004798","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we establish the existence of conformal deformations that uniformize fourth order curvature on 4-dimensional Riemannian manifolds with positive conformal invariants. Specifically, we prove that any closed, compact Riemannian manifold with positive Yamabe invariant and total Q-curvature can be conformally deformed into a metric with positive scalar curvature and constant Q-curvature. For a Riemannian manifold with umbilic boundary, positive first Yamabe invariant and total (Q,T)-curvature, it is possible to deform it into two types of Riemannian manifolds with totally geodesic boundary and positive scalar curvature. The first type satisfies Qconstant,T0 while the second type satisfies Q0,Tconstant.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.20
自引率
5.90%
发文量
271
审稿时长
7.5 months
期刊介绍: The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published. Research Areas Include: • Significant applications of functional analysis, including those to other areas of mathematics • New developments in functional analysis • Contributions to important problems in and challenges to functional analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信