{"title":"Second order Sobolev regularity results for the generalized p-parabolic equation","authors":"Yawen Feng , Mikko Parviainen , Saara Sarsa","doi":"10.1016/j.jfa.2024.110799","DOIUrl":null,"url":null,"abstract":"<div><div>We study a general class of parabolic equations<span><span><span><math><mrow><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>−</mo><msup><mrow><mo>|</mo><mi>D</mi><mi>u</mi><mo>|</mo></mrow><mrow><mi>γ</mi></mrow></msup><mo>(</mo><mi>Δ</mi><mi>u</mi><mo>+</mo><mo>(</mo><mi>p</mi><mo>−</mo><mn>2</mn><mo>)</mo><msubsup><mrow><mi>Δ</mi></mrow><mrow><mo>∞</mo></mrow><mrow><mi>N</mi></mrow></msubsup><mi>u</mi><mo>)</mo><mo>=</mo><mn>0</mn><mo>,</mo></mrow></math></span></span></span> which can be highly degenerate or singular. This class contains as special cases the standard parabolic <em>p</em>-Laplace equation and the normalized version that arises from stochastic game theory. Utilizing the systematic approach developed in our previous work we establish second order Sobolev regularity together with a priori estimates and improved range of parameters. In addition we derive second order Sobolev estimate for a nonlinear quantity. This quantity contains many useful special cases. As a corollary we also obtain that a viscosity solution has locally <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-integrable Sobolev time derivative.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"288 5","pages":"Article 110799"},"PeriodicalIF":1.7000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123624004877","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We study a general class of parabolic equations which can be highly degenerate or singular. This class contains as special cases the standard parabolic p-Laplace equation and the normalized version that arises from stochastic game theory. Utilizing the systematic approach developed in our previous work we establish second order Sobolev regularity together with a priori estimates and improved range of parameters. In addition we derive second order Sobolev estimate for a nonlinear quantity. This quantity contains many useful special cases. As a corollary we also obtain that a viscosity solution has locally -integrable Sobolev time derivative.
期刊介绍:
The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published.
Research Areas Include:
• Significant applications of functional analysis, including those to other areas of mathematics
• New developments in functional analysis
• Contributions to important problems in and challenges to functional analysis