Stability threshold of Couette flow for the 3D MHD equations

IF 1.7 2区 数学 Q1 MATHEMATICS
Yulin Rao , Zhifei Zhang , Ruizhao Zi
{"title":"Stability threshold of Couette flow for the 3D MHD equations","authors":"Yulin Rao ,&nbsp;Zhifei Zhang ,&nbsp;Ruizhao Zi","doi":"10.1016/j.jfa.2024.110796","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we consider the stability of 3D Couette flow <span><math><msup><mrow><mo>(</mo><mi>y</mi><mo>,</mo><mn>0</mn><mo>,</mo><mn>0</mn><mo>)</mo></mrow><mrow><mo>⊤</mo></mrow></msup></math></span> in a uniform background magnetic field <span><math><mi>α</mi><msup><mrow><mo>(</mo><mi>σ</mi><mo>,</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow><mrow><mo>⊤</mo></mrow></msup></math></span>. In particular, the MHD equations on <span><math><mi>T</mi><mo>×</mo><mi>R</mi><mo>×</mo><mi>T</mi></math></span> that we are concerned with are of different viscosity coefficient <em>ν</em> and magnetic diffusion coefficient <em>μ</em>. It is shown that if the background magnetic field <span><math><mi>α</mi><msup><mrow><mo>(</mo><mi>σ</mi><mo>,</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow><mrow><mo>⊤</mo></mrow></msup></math></span> with <span><math><mi>σ</mi><mo>∈</mo><mi>R</mi><mo>﹨</mo><mi>Q</mi></math></span> satisfying a generic Diophantine condition is so strong that <span><math><mo>|</mo><mi>α</mi><mo>|</mo><mo>≫</mo><mfrac><mrow><mi>ν</mi><mo>+</mo><mi>μ</mi></mrow><mrow><msqrt><mrow><mi>ν</mi><mi>μ</mi></mrow></msqrt></mrow></mfrac></math></span>, and the initial perturbations <span><math><msub><mrow><mi>u</mi></mrow><mrow><mi>in</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>b</mi></mrow><mrow><mi>in</mi></mrow></msub></math></span> satisfy <span><math><msub><mrow><mo>‖</mo><mo>(</mo><msub><mrow><mi>u</mi></mrow><mrow><mi>in</mi></mrow></msub><mo>,</mo><msub><mrow><mi>b</mi></mrow><mrow><mi>in</mi></mrow></msub><mo>)</mo><mo>‖</mo></mrow><mrow><msup><mrow><mi>H</mi></mrow><mrow><mi>N</mi><mo>+</mo><mn>2</mn></mrow></msup></mrow></msub><mo>≪</mo><mi>min</mi><mo>⁡</mo><mrow><mo>{</mo><mi>ν</mi><mo>,</mo><mi>μ</mi><mo>}</mo></mrow></math></span> for sufficiently large <em>N</em>, then the resulting solution remains close to the steady state in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> at the same order for all time. Compared with the result of Liss [Comm. Math. Phys., 377(2020), 859–908], we use a more general energy method to address the physically relevant case <span><math><mi>ν</mi><mo>≠</mo><mi>μ</mi></math></span> based on some new observations.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"288 5","pages":"Article 110796"},"PeriodicalIF":1.7000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123624004841","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we consider the stability of 3D Couette flow (y,0,0) in a uniform background magnetic field α(σ,0,1). In particular, the MHD equations on T×R×T that we are concerned with are of different viscosity coefficient ν and magnetic diffusion coefficient μ. It is shown that if the background magnetic field α(σ,0,1) with σRQ satisfying a generic Diophantine condition is so strong that |α|ν+μνμ, and the initial perturbations uin and bin satisfy (uin,bin)HN+2min{ν,μ} for sufficiently large N, then the resulting solution remains close to the steady state in L2 at the same order for all time. Compared with the result of Liss [Comm. Math. Phys., 377(2020), 859–908], we use a more general energy method to address the physically relevant case νμ based on some new observations.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.20
自引率
5.90%
发文量
271
审稿时长
7.5 months
期刊介绍: The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published. Research Areas Include: • Significant applications of functional analysis, including those to other areas of mathematics • New developments in functional analysis • Contributions to important problems in and challenges to functional analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信