Optimizing power and energy loss reduction in distribution systems with RDGs, DSVCs and EVCS under different weather scenarios

IF 7.1 2区 工程技术 Q1 ENERGY & FUELS
Chava Hari Babu , Hariharan Raju , Yuvaraj Thangaraj , Sudhakar Babu Thanikanti , Benedetto Nastasi
{"title":"Optimizing power and energy loss reduction in distribution systems with RDGs, DSVCs and EVCS under different weather scenarios","authors":"Chava Hari Babu ,&nbsp;Hariharan Raju ,&nbsp;Yuvaraj Thangaraj ,&nbsp;Sudhakar Babu Thanikanti ,&nbsp;Benedetto Nastasi","doi":"10.1016/j.seta.2025.104219","DOIUrl":null,"url":null,"abstract":"<div><div>Electric power grids are increasingly vulnerable to disruptions from extreme weather events, resulting in prolonged outages. The rise of electric vehicles (EVs) offers benefits like improved sustainability and reduced maintenance but also introduces challenges such as voltage instability and higher power losses when integrated into radial distribution systems (RDS). This study proposes an approach that integrates electric vehicle charging stations (EVCSs), distribution static VAR compensators (DSVCs), and renewable energy sources (RESs) like solar and wind into RDS, supporting both grid-to-vehicle (G2V) and vehicle-to-grid (V2G) modes to enhance flexibility and resilience. The study aims to reduce power losses under normal conditions and minimize energy not delivered (END) during fault conditions, evaluated under different weather scenarios. The spotted hyena optimizer algorithm (SHOA) and genetic algorithm (GA) are employed to optimize RDG, DSVC, and EVCS locations and capacities. Tests on the IEEE 34-bus RDS show SHOA achieves a 25 % reduction in power losses, improving system resilience and outperforming GA in both power and energy loss reduction.</div></div>","PeriodicalId":56019,"journal":{"name":"Sustainable Energy Technologies and Assessments","volume":"75 ","pages":"Article 104219"},"PeriodicalIF":7.1000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Energy Technologies and Assessments","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213138825000505","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Electric power grids are increasingly vulnerable to disruptions from extreme weather events, resulting in prolonged outages. The rise of electric vehicles (EVs) offers benefits like improved sustainability and reduced maintenance but also introduces challenges such as voltage instability and higher power losses when integrated into radial distribution systems (RDS). This study proposes an approach that integrates electric vehicle charging stations (EVCSs), distribution static VAR compensators (DSVCs), and renewable energy sources (RESs) like solar and wind into RDS, supporting both grid-to-vehicle (G2V) and vehicle-to-grid (V2G) modes to enhance flexibility and resilience. The study aims to reduce power losses under normal conditions and minimize energy not delivered (END) during fault conditions, evaluated under different weather scenarios. The spotted hyena optimizer algorithm (SHOA) and genetic algorithm (GA) are employed to optimize RDG, DSVC, and EVCS locations and capacities. Tests on the IEEE 34-bus RDS show SHOA achieves a 25 % reduction in power losses, improving system resilience and outperforming GA in both power and energy loss reduction.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Sustainable Energy Technologies and Assessments
Sustainable Energy Technologies and Assessments Energy-Renewable Energy, Sustainability and the Environment
CiteScore
12.70
自引率
12.50%
发文量
1091
期刊介绍: Encouraging a transition to a sustainable energy future is imperative for our world. Technologies that enable this shift in various sectors like transportation, heating, and power systems are of utmost importance. Sustainable Energy Technologies and Assessments welcomes papers focusing on a range of aspects and levels of technological advancements in energy generation and utilization. The aim is to reduce the negative environmental impact associated with energy production and consumption, spanning from laboratory experiments to real-world applications in the commercial sector.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信