Weak saturation in graphs: A combinatorial approach

IF 1.2 1区 数学 Q1 MATHEMATICS
Nikolai Terekhov , Maksim Zhukovskii
{"title":"Weak saturation in graphs: A combinatorial approach","authors":"Nikolai Terekhov ,&nbsp;Maksim Zhukovskii","doi":"10.1016/j.jctb.2024.12.007","DOIUrl":null,"url":null,"abstract":"<div><div>The weak saturation number <span><math><mrow><mi>wsat</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>F</mi><mo>)</mo></math></span> is the minimum number of edges in a graph on <em>n</em> vertices such that all the missing edges can be activated sequentially so that each new edge creates a copy of <em>F</em>. In contrast to previous algebraic approaches, we present a new combinatorial approach to prove lower bounds for weak saturation numbers that allows to establish worst-case tight (up to constant additive terms) general lower bounds as well as to get exact values of the weak saturation numbers for certain graph families. It is known (Alon, 1985) that, for every <em>F</em>, there exists <span><math><msub><mrow><mi>c</mi></mrow><mrow><mi>F</mi></mrow></msub></math></span> such that <span><math><mrow><mi>wsat</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>F</mi><mo>)</mo><mo>=</mo><msub><mrow><mi>c</mi></mrow><mrow><mi>F</mi></mrow></msub><mi>n</mi><mo>(</mo><mn>1</mn><mo>+</mo><mi>o</mi><mo>(</mo><mn>1</mn><mo>)</mo><mo>)</mo></math></span>. Our lower bounds imply that all values in the interval <span><math><mo>[</mo><mfrac><mrow><mi>δ</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>−</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>δ</mi><mo>+</mo><mn>1</mn></mrow></mfrac><mo>,</mo><mi>δ</mi><mo>−</mo><mn>1</mn><mo>]</mo></math></span> with step size <span><math><mfrac><mrow><mn>1</mn></mrow><mrow><mi>δ</mi><mo>+</mo><mn>1</mn></mrow></mfrac></math></span> are achievable by <span><math><msub><mrow><mi>c</mi></mrow><mrow><mi>F</mi></mrow></msub></math></span> for graphs <em>F</em> with minimum degree <em>δ</em> (while any value outside this interval is not achievable).</div></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":"172 ","pages":"Pages 146-167"},"PeriodicalIF":1.2000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series B","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0095895624001047","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The weak saturation number wsat(n,F) is the minimum number of edges in a graph on n vertices such that all the missing edges can be activated sequentially so that each new edge creates a copy of F. In contrast to previous algebraic approaches, we present a new combinatorial approach to prove lower bounds for weak saturation numbers that allows to establish worst-case tight (up to constant additive terms) general lower bounds as well as to get exact values of the weak saturation numbers for certain graph families. It is known (Alon, 1985) that, for every F, there exists cF such that wsat(n,F)=cFn(1+o(1)). Our lower bounds imply that all values in the interval [δ21δ+1,δ1] with step size 1δ+1 are achievable by cF for graphs F with minimum degree δ (while any value outside this interval is not achievable).
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.70
自引率
14.30%
发文量
99
审稿时长
6-12 weeks
期刊介绍: The Journal of Combinatorial Theory publishes original mathematical research dealing with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series B is concerned primarily with graph theory and matroid theory and is a valuable tool for mathematicians and computer scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信