Zhiqin Wang, Jingyan Wei*, Jingyi Sun, Naishi Li, Jingyuan Liu, Yang Huang, Guangjun Nie* and Yiye Li*,
{"title":"Halting Pancreatic Ductal Adenocarcinoma Progression and Metastasis by Neuron-Inhibitory Liposomes","authors":"Zhiqin Wang, Jingyan Wei*, Jingyi Sun, Naishi Li, Jingyuan Liu, Yang Huang, Guangjun Nie* and Yiye Li*, ","doi":"10.1021/acs.nanolett.4c0561710.1021/acs.nanolett.4c05617","DOIUrl":null,"url":null,"abstract":"<p >Pancreatic ductal adenocarcinoma (PDAC) remains an aggressive malignancy. The occurrence of perineural invasion is associated with neuropathic pain and poor prognosis of PDAC, underscoring the active participation of nerves and their potential as therapeutic targets. Lidocaine is a local anesthetic with antitumor properties in some tumors in the clinic. Nevertheless, its clinical application in PDAC is constrained by the insufficient tumor accumulation and potential neurovirulence associated with a high-dose regimen. Here, a tumor microenvironment-targeted and -responsive liposome was constructed to deliver lidocaine for restraining PDAC growth through single nerve regulation. By conjugation of a collagen binding peptide, the pH-responsive liposomes accumulate in the extracellular matrix. The released lidocaine selectively reduces neurite length and density, thereby indirectly halting the progression and metastasis of PDAC in an orthotopic mouse model without noticeable adverse effects. This study highlights the potential of anesthetic-based nanomodulation of crosstalk between nerve and tumor cells for PDAC treatment.</p>","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"25 5","pages":"1964–1973 1964–1973"},"PeriodicalIF":9.6000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.nanolett.4c05617","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains an aggressive malignancy. The occurrence of perineural invasion is associated with neuropathic pain and poor prognosis of PDAC, underscoring the active participation of nerves and their potential as therapeutic targets. Lidocaine is a local anesthetic with antitumor properties in some tumors in the clinic. Nevertheless, its clinical application in PDAC is constrained by the insufficient tumor accumulation and potential neurovirulence associated with a high-dose regimen. Here, a tumor microenvironment-targeted and -responsive liposome was constructed to deliver lidocaine for restraining PDAC growth through single nerve regulation. By conjugation of a collagen binding peptide, the pH-responsive liposomes accumulate in the extracellular matrix. The released lidocaine selectively reduces neurite length and density, thereby indirectly halting the progression and metastasis of PDAC in an orthotopic mouse model without noticeable adverse effects. This study highlights the potential of anesthetic-based nanomodulation of crosstalk between nerve and tumor cells for PDAC treatment.
期刊介绍:
Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including:
- Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale
- Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies
- Modeling and simulation of synthetic, assembly, and interaction processes
- Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance
- Applications of nanoscale materials in living and environmental systems
Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.