Enhancing Li Deposition Behavior through Valence Gradient-Assisted Iron Layer

IF 9.6 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Xuzi Zhang, Yue Li, Jialiang Wang, Yue Fei, Hao Zhang* and Ge Li*, 
{"title":"Enhancing Li Deposition Behavior through Valence Gradient-Assisted Iron Layer","authors":"Xuzi Zhang,&nbsp;Yue Li,&nbsp;Jialiang Wang,&nbsp;Yue Fei,&nbsp;Hao Zhang* and Ge Li*,&nbsp;","doi":"10.1021/acs.nanolett.4c0394510.1021/acs.nanolett.4c03945","DOIUrl":null,"url":null,"abstract":"<p >Uncontrolled lithium (Li) dendrite formation presents major safety risks and challenges in the Li host design. A novel approach is introduced, using a valence gradient in iron nanoparticles (Fe<sup>0</sup>, Fe<sup>2+</sup>, Fe<sup>3+</sup>) to stabilize the anodes. An Fe<sup>0</sup> component, with fast Li diffusion, ensures a steady supply of Li to Fe<sup>2+</sup> and Fe<sup>3+</sup> components, which have slower Li diffusion. This coordinated interplay between fast and slow diffusion uniformizes Li deposition near the substrate, effectively reducing the rate of dendrite growth. The as-prepared framework demonstrates uniform Li plating with a minimal hysteresis voltage after extensive cycling for 1200 h in symmetric cells. Integrated into a full cell with LiFePO<sub>4</sub>, it demonstrates outstanding cycling stability for almost 950 cycles with a capacity of 92.2 mA h g<sup>–1</sup> at 1C with an ultralow N/P ratio of 1.19. This valence gradient design strategy broadens the design potential for transition-metal compounds in regulating Li deposition by mitigating interfacial Li<sup>+</sup> behavior.</p>","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"25 5","pages":"1783–1791 1783–1791"},"PeriodicalIF":9.6000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.nanolett.4c03945","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Uncontrolled lithium (Li) dendrite formation presents major safety risks and challenges in the Li host design. A novel approach is introduced, using a valence gradient in iron nanoparticles (Fe0, Fe2+, Fe3+) to stabilize the anodes. An Fe0 component, with fast Li diffusion, ensures a steady supply of Li to Fe2+ and Fe3+ components, which have slower Li diffusion. This coordinated interplay between fast and slow diffusion uniformizes Li deposition near the substrate, effectively reducing the rate of dendrite growth. The as-prepared framework demonstrates uniform Li plating with a minimal hysteresis voltage after extensive cycling for 1200 h in symmetric cells. Integrated into a full cell with LiFePO4, it demonstrates outstanding cycling stability for almost 950 cycles with a capacity of 92.2 mA h g–1 at 1C with an ultralow N/P ratio of 1.19. This valence gradient design strategy broadens the design potential for transition-metal compounds in regulating Li deposition by mitigating interfacial Li+ behavior.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信