Bimetallic Sulfides Cr0.99V1.8S4 with Loosely Packed Structure: Exploring the Boundary of Conversion and Intercalation Sodium-Ion Storage Mechanism

IF 9.1 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Keyan Hu*, Wen Chen, Youtan Pan, Shuai Li, Zhuoran Lv, Yuting He, Chong Zheng, Fuqiang Huang and Wujie Dong*, 
{"title":"Bimetallic Sulfides Cr0.99V1.8S4 with Loosely Packed Structure: Exploring the Boundary of Conversion and Intercalation Sodium-Ion Storage Mechanism","authors":"Keyan Hu*,&nbsp;Wen Chen,&nbsp;Youtan Pan,&nbsp;Shuai Li,&nbsp;Zhuoran Lv,&nbsp;Yuting He,&nbsp;Chong Zheng,&nbsp;Fuqiang Huang and Wujie Dong*,&nbsp;","doi":"10.1021/acs.nanolett.4c0475010.1021/acs.nanolett.4c04750","DOIUrl":null,"url":null,"abstract":"<p >Metal sulfide electrodes for sodium-ion batteries face trade-offs among high capacity, fast kinetics, and stability. The challenge lies in breaking and restoring metal–sulfur bonds and allowing rapid ionic transport. Here we explore the boundary of conversion- and intercalation-type metal sulfides to develop ideal sodium-ion storage materials. We focus on sulfides of vanadium and chromium because of their adjacent atomic numbers but different energy storage mechanism. Among various sulfides of vanadium and chromium, a loosely packed bimetallic sulfide, Cr<sub>0.99</sub>V<sub>1.8</sub>S<sub>4</sub>, with cationic vacancies and metallic conductivity (4.28 S m<sup>–1</sup>), shows optimal sodium-ion storage performance: an initial Coulombic efficiency of 95.6%, a reversible capacity of 551 mAh g<sup>–1</sup> at 1.6 C, and maintaining 100% capacity after 600 cycles at a high rate of 16–66 C.</p>","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"25 5","pages":"1823–1830 1823–1830"},"PeriodicalIF":9.1000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.nanolett.4c04750","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Metal sulfide electrodes for sodium-ion batteries face trade-offs among high capacity, fast kinetics, and stability. The challenge lies in breaking and restoring metal–sulfur bonds and allowing rapid ionic transport. Here we explore the boundary of conversion- and intercalation-type metal sulfides to develop ideal sodium-ion storage materials. We focus on sulfides of vanadium and chromium because of their adjacent atomic numbers but different energy storage mechanism. Among various sulfides of vanadium and chromium, a loosely packed bimetallic sulfide, Cr0.99V1.8S4, with cationic vacancies and metallic conductivity (4.28 S m–1), shows optimal sodium-ion storage performance: an initial Coulombic efficiency of 95.6%, a reversible capacity of 551 mAh g–1 at 1.6 C, and maintaining 100% capacity after 600 cycles at a high rate of 16–66 C.

Abstract Image

具有松散堆积结构的双金属硫化物Cr0.99V1.8S4:转换和插层钠离子储存机制的边界探索
用于钠离子电池的金属硫化物电极面临着高容量、快速动力学和稳定性之间的权衡。挑战在于打破和恢复金属-硫键,并允许快速离子传输。在这里,我们探索转换型和插层型金属硫化物的边界,以开发理想的钠离子存储材料。我们主要研究钒和铬的硫化物,因为它们原子序数相邻,但能量储存机制不同。在钒铬的多种硫化物中,具有阳离子空位和金属电导率(4.28 S m-1)的松散填充双金属硫化物Cr0.99V1.8S4具有最佳的钠离子存储性能:初始库仑效率为95.6%,在1.6℃下可逆容量为551 mAh g-1,在16-66℃的高倍率下循环600次后容量保持100%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信