{"title":"Polarization-Independent High-Q Phase Gradient Metasurfaces","authors":"Bo Zhao, Lin Lin and Mark Lawrence*, ","doi":"10.1021/acs.nanolett.4c0526010.1021/acs.nanolett.4c05260","DOIUrl":null,"url":null,"abstract":"<p >Dielectric metasurfaces have emerged as an unprecedented platform for precise wavefront manipulation at subwavelength scales with nearly zero loss. When aiming at dynamic applications such as AR/VR and LiDAR, high-quality factor (high-Q) phase gradient metasurfaces have emerged as a way to boost weak light–material interactions in flat-optical components. However, resonant features are naturally tied to polarization, limiting devices to operating on a single polarization state, which reduces the efficiency and adaptability of wave-shaping. Here, we propose polarization-independent high-Q phase gradient metasurfaces, where two cross-polarized dipolar guided mode resonances (DGMRs) with similar Q around 300 are spectrally aligned while being spatially tuned. Our simulations demonstrate that, by adding less than 5% geometric perturbation, the metasurface can steer arbitrarily polarized beams to 31° with diffraction efficiency >70%. These devices show potential for advancing programmable polarization-independent wavefront shaping and unlocking ways to efficiently sculpt nonlinear frequency generation and mixing processes.</p>","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"25 5","pages":"1862–1869 1862–1869"},"PeriodicalIF":9.6000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.nanolett.4c05260","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Dielectric metasurfaces have emerged as an unprecedented platform for precise wavefront manipulation at subwavelength scales with nearly zero loss. When aiming at dynamic applications such as AR/VR and LiDAR, high-quality factor (high-Q) phase gradient metasurfaces have emerged as a way to boost weak light–material interactions in flat-optical components. However, resonant features are naturally tied to polarization, limiting devices to operating on a single polarization state, which reduces the efficiency and adaptability of wave-shaping. Here, we propose polarization-independent high-Q phase gradient metasurfaces, where two cross-polarized dipolar guided mode resonances (DGMRs) with similar Q around 300 are spectrally aligned while being spatially tuned. Our simulations demonstrate that, by adding less than 5% geometric perturbation, the metasurface can steer arbitrarily polarized beams to 31° with diffraction efficiency >70%. These devices show potential for advancing programmable polarization-independent wavefront shaping and unlocking ways to efficiently sculpt nonlinear frequency generation and mixing processes.
期刊介绍:
Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including:
- Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale
- Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies
- Modeling and simulation of synthetic, assembly, and interaction processes
- Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance
- Applications of nanoscale materials in living and environmental systems
Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.