Proton-Transfer Dynamics Regulates CO2 Electroreduction Products via Hydrogen Coverage

IF 12.7 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Qun Fan, Tiantian Xiao, Hai Liu, Tianxiang Yan, Jianlong Lin, Siyu Kuang, Haoyuan Chi, Thomas J. Meyer, Sheng Zhang* and Xinbin Ma, 
{"title":"Proton-Transfer Dynamics Regulates CO2 Electroreduction Products via Hydrogen Coverage","authors":"Qun Fan,&nbsp;Tiantian Xiao,&nbsp;Hai Liu,&nbsp;Tianxiang Yan,&nbsp;Jianlong Lin,&nbsp;Siyu Kuang,&nbsp;Haoyuan Chi,&nbsp;Thomas J. Meyer,&nbsp;Sheng Zhang* and Xinbin Ma,&nbsp;","doi":"10.1021/acscentsci.4c0153410.1021/acscentsci.4c01534","DOIUrl":null,"url":null,"abstract":"<p >Electrochemical conversion of CO<sub>2</sub> to hydrocarbons is a promising approach to carbon neutrality and energy storage. The formation of reaction intermediates involves crucial steps of proton transfer, making it essential to understand the role of protons in the electrochemical process to control the product selectivity and elucidate the underlying catalytic reaction mechanism of the CO<sub>2</sub> electrochemical reduction (CO<sub>2</sub>RR). In this work, we proposed a strategy to regulate product selectivities by tuning local proton transport rates through a surface resin layer over cuprous oxides. We systematically studied the influence of proton transfer rates on product selectivities by regulating the polymerization degree of resorcinol-formaldehyde resin (RF). The production of C<sub>2</sub> compounds and CH<sub>4</sub> could be switched through an RF coating with the maximum CH<sub>4</sub> Faradaic efficiency of 51% achieved at current densities close to the amperage level. Both experimental and theoretical calculation results suggest that the resin layer can subtly alter proton transfer rates during the electrochemical process, thereby influencing the hydrogen coverage on catalytic sites and ultimately guiding the overall electrochemical performance toward product selectivity.</p><p >Proton transfer rates are regulated through a surface resin layer to efficiently tune different product selectivities over copper catalysts during electrochemical CO<sub>2</sub> reduction.</p>","PeriodicalId":10,"journal":{"name":"ACS Central Science","volume":"10 12","pages":"2331–2337 2331–2337"},"PeriodicalIF":12.7000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acscentsci.4c01534","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Central Science","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acscentsci.4c01534","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Electrochemical conversion of CO2 to hydrocarbons is a promising approach to carbon neutrality and energy storage. The formation of reaction intermediates involves crucial steps of proton transfer, making it essential to understand the role of protons in the electrochemical process to control the product selectivity and elucidate the underlying catalytic reaction mechanism of the CO2 electrochemical reduction (CO2RR). In this work, we proposed a strategy to regulate product selectivities by tuning local proton transport rates through a surface resin layer over cuprous oxides. We systematically studied the influence of proton transfer rates on product selectivities by regulating the polymerization degree of resorcinol-formaldehyde resin (RF). The production of C2 compounds and CH4 could be switched through an RF coating with the maximum CH4 Faradaic efficiency of 51% achieved at current densities close to the amperage level. Both experimental and theoretical calculation results suggest that the resin layer can subtly alter proton transfer rates during the electrochemical process, thereby influencing the hydrogen coverage on catalytic sites and ultimately guiding the overall electrochemical performance toward product selectivity.

Proton transfer rates are regulated through a surface resin layer to efficiently tune different product selectivities over copper catalysts during electrochemical CO2 reduction.

求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Central Science
ACS Central Science Chemical Engineering-General Chemical Engineering
CiteScore
25.50
自引率
0.50%
发文量
194
审稿时长
10 weeks
期刊介绍: ACS Central Science publishes significant primary reports on research in chemistry and allied fields where chemical approaches are pivotal. As the first fully open-access journal by the American Chemical Society, it covers compelling and important contributions to the broad chemistry and scientific community. "Central science," a term popularized nearly 40 years ago, emphasizes chemistry's central role in connecting physical and life sciences, and fundamental sciences with applied disciplines like medicine and engineering. The journal focuses on exceptional quality articles, addressing advances in fundamental chemistry and interdisciplinary research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信