Botyo Dimitrov, Daria Bukharina, Valeriia Poliukhova, Dhriti Nepal, Michael E. McConney, Timothy J. Bunning and Vladimir V. Tsukruk*,
{"title":"Printed Twisted Thin Films with Near-Infrared Bandgaps and Tailored Chiroptical Properties","authors":"Botyo Dimitrov, Daria Bukharina, Valeriia Poliukhova, Dhriti Nepal, Michael E. McConney, Timothy J. Bunning and Vladimir V. Tsukruk*, ","doi":"10.1021/acsaom.4c0038610.1021/acsaom.4c00386","DOIUrl":null,"url":null,"abstract":"<p >In this work, twisted helical cellulose nanocrystals films with preprogrammed circular polarization and near-infrared reflectance are fabricated via a blade-based 3D printing method. The films are composed of stacked nanoscale slabs with high birefringence from unidirectionally organized cellulose nanocrystals. By changing the printing director, we achieved two types of films: twisted helical stacks and anisotropic Bragg stacks. These films are highly transparent and clear, and the achiral anisotropic Bragg stack shows near-infrared spectral region reflectance (1.3–1.4 μm). In contrast, the twisted helical films show concurrent left- and right-handed circularly polarized properties, as opposed to left-handed natural cellulose nanocrystals films. We observe dual chiroptical properties with circular dichroism peaks due to circular Bragg reflectance in the visible region and suggest that the circularly polarized properties are extended to the near-infrared region. These observations prompted us to explore the transition between anisotropic Bragg stacks and continuous helical films via simulations. We show that the printed twisted films can act as optical metamaterials with dual helicity and fill the gap between known photonic structures─the conventional continuous chiral nematic material with a chiroptical appearance and the achiral Bragg stack with a controlled photonic bandgap. These printed twisted stacked films hold the potential of larger-scale printed ordering of unique anisotropic nanostructures for circularly polarized-sensitive photonic, thermal, and energy management applications.</p>","PeriodicalId":29803,"journal":{"name":"ACS Applied Optical Materials","volume":"2 12","pages":"2540–2550 2540–2550"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsaom.4c00386","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Optical Materials","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaom.4c00386","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, twisted helical cellulose nanocrystals films with preprogrammed circular polarization and near-infrared reflectance are fabricated via a blade-based 3D printing method. The films are composed of stacked nanoscale slabs with high birefringence from unidirectionally organized cellulose nanocrystals. By changing the printing director, we achieved two types of films: twisted helical stacks and anisotropic Bragg stacks. These films are highly transparent and clear, and the achiral anisotropic Bragg stack shows near-infrared spectral region reflectance (1.3–1.4 μm). In contrast, the twisted helical films show concurrent left- and right-handed circularly polarized properties, as opposed to left-handed natural cellulose nanocrystals films. We observe dual chiroptical properties with circular dichroism peaks due to circular Bragg reflectance in the visible region and suggest that the circularly polarized properties are extended to the near-infrared region. These observations prompted us to explore the transition between anisotropic Bragg stacks and continuous helical films via simulations. We show that the printed twisted films can act as optical metamaterials with dual helicity and fill the gap between known photonic structures─the conventional continuous chiral nematic material with a chiroptical appearance and the achiral Bragg stack with a controlled photonic bandgap. These printed twisted stacked films hold the potential of larger-scale printed ordering of unique anisotropic nanostructures for circularly polarized-sensitive photonic, thermal, and energy management applications.
期刊介绍:
ACS Applied Optical Materials is an international and interdisciplinary forum to publish original experimental and theoretical including simulation and modeling research in optical materials complementing the ACS Applied Materials portfolio. With a focus on innovative applications ACS Applied Optical Materials also complements and expands the scope of existing ACS publications that focus on fundamental aspects of the interaction between light and matter in materials science including ACS Photonics Macromolecules Journal of Physical Chemistry C ACS Nano and Nano Letters.The scope of ACS Applied Optical Materials includes high quality research of an applied nature that integrates knowledge in materials science chemistry physics optical science and engineering.