{"title":"Effective Remediation Strategy for Acidic Wastewater: Integrating Ozone Nanobubbles with Sustainable Adsorption Techniques","authors":"Ande Fudja Rafryanto, Eka, Dicky Andro Charlie, Lina Jaya Diguna, Lei Zhang, Riska Rachmantyo, Arie Wibowo, Nurul Taufiqu Rochman, Alfian Noviyanto* and Arramel*, ","doi":"10.1021/acssusresmgt.4c0035810.1021/acssusresmgt.4c00358","DOIUrl":null,"url":null,"abstract":"<p >Amidst the powerful capabilities of wastewater remediation using ozone nanobubbles (ONBs), the intricate challenge of pH control remains unsolved. To date, an efficient and scalable chemical agent is highly desired to overcome the limiting factor of conventional ozone-based wastewater conversion. This study introduces a sequential system that combines ONBs with adsorption techniques utilizing an eggshell-based adsorbent. The synergistic application of ONBs and adsorption successfully achieved notable removal percentages of 95.05% for turbidity, 96.18% for color at 418 nm, and 61.33% for TDS. In comparison, the individual ONB system showed removal percentages of 94.97%, 95.93%, and 61.97%, while the adsorption alone achieved 34.02, 29.65%, and 16.93%, respectively. Additionally, the combined system effectively neutralized the solution, increasing the pH from 2.67 to 7.14, outperforming both ONBs (pH 2.67) and adsorption (pH 6.89) alone. Our work underscores the efficiency of the system, which not only provides a high removal percentage of pollutants but also secures the required pH levels. This showcases a forward leap in developing environmentally friendly and efficient water treatment technologies.</p>","PeriodicalId":100015,"journal":{"name":"ACS Sustainable Resource Management","volume":"1 12","pages":"2583–2592 2583–2592"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sustainable Resource Management","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acssusresmgt.4c00358","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Amidst the powerful capabilities of wastewater remediation using ozone nanobubbles (ONBs), the intricate challenge of pH control remains unsolved. To date, an efficient and scalable chemical agent is highly desired to overcome the limiting factor of conventional ozone-based wastewater conversion. This study introduces a sequential system that combines ONBs with adsorption techniques utilizing an eggshell-based adsorbent. The synergistic application of ONBs and adsorption successfully achieved notable removal percentages of 95.05% for turbidity, 96.18% for color at 418 nm, and 61.33% for TDS. In comparison, the individual ONB system showed removal percentages of 94.97%, 95.93%, and 61.97%, while the adsorption alone achieved 34.02, 29.65%, and 16.93%, respectively. Additionally, the combined system effectively neutralized the solution, increasing the pH from 2.67 to 7.14, outperforming both ONBs (pH 2.67) and adsorption (pH 6.89) alone. Our work underscores the efficiency of the system, which not only provides a high removal percentage of pollutants but also secures the required pH levels. This showcases a forward leap in developing environmentally friendly and efficient water treatment technologies.