Effective Remediation Strategy for Acidic Wastewater: Integrating Ozone Nanobubbles with Sustainable Adsorption Techniques

Ande Fudja Rafryanto,  Eka, Dicky Andro Charlie, Lina Jaya Diguna, Lei Zhang, Riska Rachmantyo, Arie Wibowo, Nurul Taufiqu Rochman, Alfian Noviyanto* and Arramel*, 
{"title":"Effective Remediation Strategy for Acidic Wastewater: Integrating Ozone Nanobubbles with Sustainable Adsorption Techniques","authors":"Ande Fudja Rafryanto,&nbsp; Eka,&nbsp;Dicky Andro Charlie,&nbsp;Lina Jaya Diguna,&nbsp;Lei Zhang,&nbsp;Riska Rachmantyo,&nbsp;Arie Wibowo,&nbsp;Nurul Taufiqu Rochman,&nbsp;Alfian Noviyanto* and Arramel*,&nbsp;","doi":"10.1021/acssusresmgt.4c0035810.1021/acssusresmgt.4c00358","DOIUrl":null,"url":null,"abstract":"<p >Amidst the powerful capabilities of wastewater remediation using ozone nanobubbles (ONBs), the intricate challenge of pH control remains unsolved. To date, an efficient and scalable chemical agent is highly desired to overcome the limiting factor of conventional ozone-based wastewater conversion. This study introduces a sequential system that combines ONBs with adsorption techniques utilizing an eggshell-based adsorbent. The synergistic application of ONBs and adsorption successfully achieved notable removal percentages of 95.05% for turbidity, 96.18% for color at 418 nm, and 61.33% for TDS. In comparison, the individual ONB system showed removal percentages of 94.97%, 95.93%, and 61.97%, while the adsorption alone achieved 34.02, 29.65%, and 16.93%, respectively. Additionally, the combined system effectively neutralized the solution, increasing the pH from 2.67 to 7.14, outperforming both ONBs (pH 2.67) and adsorption (pH 6.89) alone. Our work underscores the efficiency of the system, which not only provides a high removal percentage of pollutants but also secures the required pH levels. This showcases a forward leap in developing environmentally friendly and efficient water treatment technologies.</p>","PeriodicalId":100015,"journal":{"name":"ACS Sustainable Resource Management","volume":"1 12","pages":"2583–2592 2583–2592"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sustainable Resource Management","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acssusresmgt.4c00358","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Amidst the powerful capabilities of wastewater remediation using ozone nanobubbles (ONBs), the intricate challenge of pH control remains unsolved. To date, an efficient and scalable chemical agent is highly desired to overcome the limiting factor of conventional ozone-based wastewater conversion. This study introduces a sequential system that combines ONBs with adsorption techniques utilizing an eggshell-based adsorbent. The synergistic application of ONBs and adsorption successfully achieved notable removal percentages of 95.05% for turbidity, 96.18% for color at 418 nm, and 61.33% for TDS. In comparison, the individual ONB system showed removal percentages of 94.97%, 95.93%, and 61.97%, while the adsorption alone achieved 34.02, 29.65%, and 16.93%, respectively. Additionally, the combined system effectively neutralized the solution, increasing the pH from 2.67 to 7.14, outperforming both ONBs (pH 2.67) and adsorption (pH 6.89) alone. Our work underscores the efficiency of the system, which not only provides a high removal percentage of pollutants but also secures the required pH levels. This showcases a forward leap in developing environmentally friendly and efficient water treatment technologies.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信