Reconfigurable Amphiphilic DNA Nanotweezer for Targeted Delivery of Therapeutic Oligonucleotides

IF 12.7 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Shuxuan Shao, Wei Du, Shuang Liu, Canqiong Hu, Cao Zhang, Lexun Li, Fan Yang, Qiaoling Liu* and Weihong Tan, 
{"title":"Reconfigurable Amphiphilic DNA Nanotweezer for Targeted Delivery of Therapeutic Oligonucleotides","authors":"Shuxuan Shao,&nbsp;Wei Du,&nbsp;Shuang Liu,&nbsp;Canqiong Hu,&nbsp;Cao Zhang,&nbsp;Lexun Li,&nbsp;Fan Yang,&nbsp;Qiaoling Liu* and Weihong Tan,&nbsp;","doi":"10.1021/acscentsci.4c0115210.1021/acscentsci.4c01152","DOIUrl":null,"url":null,"abstract":"<p >Amphiphilic lipid oligonucleotide conjugates are powerful molecular-engineering materials that have been used for delivery of therapeutic oligonucleotides. However, conventional lipid oligonucleotide conjugates suffer from poor selectivity to target cells due to the nonspecific interaction between lipid tails and cell membranes. Herein, a reconfigurable DNA nanotweezer consisting of a c-Met aptamer and bischolesterol-modified antisense oligonucleotide was designed for c-Met-targeted delivery of therapeutic antisense oligonucleotides. The c-Met aptamer is used to keep the DNA nanotweezer in a “closed” state, which enables the hydrophobic interaction within bischolesterol moieties. As a result, the amphiphilic DNA nanotweezer shows only a weak interaction with the cell membrane. Upon the release of the c-Met aptamer, the DNA nanotweezer converts to an “open” state, which facilitates the insertion of a cholesterol moiety into the cell membrane. Thus, the reconfigurable DNA nanotweezer enables the selective membrane anchoring of the DNA nanotweezer in cancerous cells that highly expressed c-Met protein. Moreover, this amphiphilic DNA nanotweezer shows enhanced accumulation at the tumor site and the inhibition of tumor growth. Taking advantage of the stimuli-responsive membrane anchoring capability, this reconfigurable DNA nanotweezer could be further explored as a smart multifunctional platform for cancer therapy.</p><p >c-Met protein-induced conformational transition of the amphiphilic DNA nanotweezer from “closed” to “open” state enables the tunable membrane anchoring capability for enhanced targeted delivery.</p>","PeriodicalId":10,"journal":{"name":"ACS Central Science","volume":"10 12","pages":"2338–2345 2338–2345"},"PeriodicalIF":12.7000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acscentsci.4c01152","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Central Science","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acscentsci.4c01152","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Amphiphilic lipid oligonucleotide conjugates are powerful molecular-engineering materials that have been used for delivery of therapeutic oligonucleotides. However, conventional lipid oligonucleotide conjugates suffer from poor selectivity to target cells due to the nonspecific interaction between lipid tails and cell membranes. Herein, a reconfigurable DNA nanotweezer consisting of a c-Met aptamer and bischolesterol-modified antisense oligonucleotide was designed for c-Met-targeted delivery of therapeutic antisense oligonucleotides. The c-Met aptamer is used to keep the DNA nanotweezer in a “closed” state, which enables the hydrophobic interaction within bischolesterol moieties. As a result, the amphiphilic DNA nanotweezer shows only a weak interaction with the cell membrane. Upon the release of the c-Met aptamer, the DNA nanotweezer converts to an “open” state, which facilitates the insertion of a cholesterol moiety into the cell membrane. Thus, the reconfigurable DNA nanotweezer enables the selective membrane anchoring of the DNA nanotweezer in cancerous cells that highly expressed c-Met protein. Moreover, this amphiphilic DNA nanotweezer shows enhanced accumulation at the tumor site and the inhibition of tumor growth. Taking advantage of the stimuli-responsive membrane anchoring capability, this reconfigurable DNA nanotweezer could be further explored as a smart multifunctional platform for cancer therapy.

c-Met protein-induced conformational transition of the amphiphilic DNA nanotweezer from “closed” to “open” state enables the tunable membrane anchoring capability for enhanced targeted delivery.

求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Central Science
ACS Central Science Chemical Engineering-General Chemical Engineering
CiteScore
25.50
自引率
0.50%
发文量
194
审稿时长
10 weeks
期刊介绍: ACS Central Science publishes significant primary reports on research in chemistry and allied fields where chemical approaches are pivotal. As the first fully open-access journal by the American Chemical Society, it covers compelling and important contributions to the broad chemistry and scientific community. "Central science," a term popularized nearly 40 years ago, emphasizes chemistry's central role in connecting physical and life sciences, and fundamental sciences with applied disciplines like medicine and engineering. The journal focuses on exceptional quality articles, addressing advances in fundamental chemistry and interdisciplinary research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信