Hunter O. Ford, Brian L. Chaloux, Nishani K. Jayakody, Christopher A. Klug, Eric G. Ruzicka, Meghanne Tighe, Ryan H. DeBlock, Jeffrey W. Long, Debra R. Rolison and Megan Bourg Sassin*,
{"title":"Single-Ion-Conducting Polymer Electrolytes for Rechargeable Alkaline Ag–Zn Batteries","authors":"Hunter O. Ford, Brian L. Chaloux, Nishani K. Jayakody, Christopher A. Klug, Eric G. Ruzicka, Meghanne Tighe, Ryan H. DeBlock, Jeffrey W. Long, Debra R. Rolison and Megan Bourg Sassin*, ","doi":"10.1021/acsorginorgau.4c0005310.1021/acsorginorgau.4c00053","DOIUrl":null,"url":null,"abstract":"<p >Recently, we reported on the synthesis and performance of a cross-linked single-anion-conducting solid-state electrolyte (SSE) based on quaternized poly(dimethylaminomethylstyrene) (pDMAMS<sup>+</sup>) via initiated chemical vapor deposition (iCVD). In the homopolymer pDMAMS<sup>+</sup>-based SSE, the cross-linking occurs at the positively charged ammonium cation sites, hindering ion transport and conductivity. To improve ionic conductivity, we now report on a copolymer system, comprising DMAMS and divinylbenzene (DVB). Incorporating DVB moves the cross-links to the polymer backbone leaving the quaternary ammonium cation and its paired anion with maximal dynamic freedom. We evaluate the structure–transport relationships of a series of p[DVB-DMAMS] copolymers with varying DVB content using electrochemical impedance spectroscopy, nuclear magnetic resonance spectroscopy, and small- and wide-angle X-ray scattering. Our best composition containing 2.5 wt % DVB provides 1 mS cm<sup>–1</sup> single-ion OH<sup>–</sup> conductivity under hydrated conditions, a significant improvement over the 0.01 mS cm<sup>–1</sup> of the hydrated homopolymer pDMAMS<sup>+</sup> SSE. All copolymer compositions support Zn–ZnO and Ag–Zn electrochemical reduction–oxidation (redox) chemistry, which demonstrates the feasibility of a Ag–Zn battery using an alkaline single-ion-conducting SSE. Galvanostatic cycling shows some transport of Ag through the polymer electrolyte, however the deleterious effects of Ag migration can be partially mitigated by transitioning from a two-dimensional (2D) planar electrode to a 3D sponge electrode. With these promising results, the foundation is laid for using single-anion-conducting SSEs within alkaline Zn batteries.</p>","PeriodicalId":29797,"journal":{"name":"ACS Organic & Inorganic Au","volume":"5 1","pages":"37–46 37–46"},"PeriodicalIF":3.3000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsorginorgau.4c00053","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Organic & Inorganic Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsorginorgau.4c00053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Recently, we reported on the synthesis and performance of a cross-linked single-anion-conducting solid-state electrolyte (SSE) based on quaternized poly(dimethylaminomethylstyrene) (pDMAMS+) via initiated chemical vapor deposition (iCVD). In the homopolymer pDMAMS+-based SSE, the cross-linking occurs at the positively charged ammonium cation sites, hindering ion transport and conductivity. To improve ionic conductivity, we now report on a copolymer system, comprising DMAMS and divinylbenzene (DVB). Incorporating DVB moves the cross-links to the polymer backbone leaving the quaternary ammonium cation and its paired anion with maximal dynamic freedom. We evaluate the structure–transport relationships of a series of p[DVB-DMAMS] copolymers with varying DVB content using electrochemical impedance spectroscopy, nuclear magnetic resonance spectroscopy, and small- and wide-angle X-ray scattering. Our best composition containing 2.5 wt % DVB provides 1 mS cm–1 single-ion OH– conductivity under hydrated conditions, a significant improvement over the 0.01 mS cm–1 of the hydrated homopolymer pDMAMS+ SSE. All copolymer compositions support Zn–ZnO and Ag–Zn electrochemical reduction–oxidation (redox) chemistry, which demonstrates the feasibility of a Ag–Zn battery using an alkaline single-ion-conducting SSE. Galvanostatic cycling shows some transport of Ag through the polymer electrolyte, however the deleterious effects of Ag migration can be partially mitigated by transitioning from a two-dimensional (2D) planar electrode to a 3D sponge electrode. With these promising results, the foundation is laid for using single-anion-conducting SSEs within alkaline Zn batteries.
期刊介绍:
ACS Organic & Inorganic Au is an open access journal that publishes original experimental and theoretical/computational studies on organic organometallic inorganic crystal growth and engineering and organic process chemistry. Short letters comprehensive articles reviews and perspectives are welcome on topics that include:Organic chemistry Organometallic chemistry Inorganic Chemistry and Organic Process Chemistry.