{"title":"Bioenergy production from wastewater using cost-effective ceramic membranes: a review","authors":"Syed Taufiq Ahmad, Rizwan Ahmad, Hamna Shaukat, Prangya Ranjan Rout, Tahir Fazal, Alexander Dumfort","doi":"10.1007/s10311-025-01822-x","DOIUrl":null,"url":null,"abstract":"<p>Water scarcity and wastewater pollution are major health issues, yet traditional wastewater treatment technologies are limited by high operational costs and energy demands, and membrane fouling. Here we review low-cost ceramic membranes for wastewater treatment and bioenergy production, with emphasis on bioreactors, and microbial fuel cells to generate electricity. Ceramic membranes display high filtration performance and resistance to harsh conditions, achieving water flux rates up to 250 L/m<sup>2</sup> per h, significantly outperforming polymeric membranes. Ceramic membranes are now affordable due to recent advances in as clay-based ceramics, extrusion and electrospinning. Ceramic membranes integrated into microbial fuel cells and anaerobic bioreactors could enhance power generation by 20% and biogas yield by 15–30%. Surface modifications and nanomaterial use have reduced fouling by up to 60%, yet issues of biofouling and high fabrication costs persist.</p>","PeriodicalId":541,"journal":{"name":"Environmental Chemistry Letters","volume":"136 1","pages":""},"PeriodicalIF":15.0000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Chemistry Letters","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s10311-025-01822-x","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Water scarcity and wastewater pollution are major health issues, yet traditional wastewater treatment technologies are limited by high operational costs and energy demands, and membrane fouling. Here we review low-cost ceramic membranes for wastewater treatment and bioenergy production, with emphasis on bioreactors, and microbial fuel cells to generate electricity. Ceramic membranes display high filtration performance and resistance to harsh conditions, achieving water flux rates up to 250 L/m2 per h, significantly outperforming polymeric membranes. Ceramic membranes are now affordable due to recent advances in as clay-based ceramics, extrusion and electrospinning. Ceramic membranes integrated into microbial fuel cells and anaerobic bioreactors could enhance power generation by 20% and biogas yield by 15–30%. Surface modifications and nanomaterial use have reduced fouling by up to 60%, yet issues of biofouling and high fabrication costs persist.
期刊介绍:
Environmental Chemistry Letters explores the intersections of geology, chemistry, physics, and biology. Published articles are of paramount importance to the examination of both natural and engineered environments. The journal features original and review articles of exceptional significance, encompassing topics such as the characterization of natural and impacted environments, the behavior, prevention, treatment, and control of mineral, organic, and radioactive pollutants. It also delves into interfacial studies involving diverse media like soil, sediment, water, air, organisms, and food. Additionally, the journal covers green chemistry, environmentally friendly synthetic pathways, alternative fuels, ecotoxicology, risk assessment, environmental processes and modeling, environmental technologies, remediation and control, and environmental analytical chemistry using biomolecular tools and tracers.