Multi-interface licensing of protein import into a phage nucleus

IF 50.5 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Nature Pub Date : 2025-02-05 DOI:10.1038/s41586-024-08547-x
Claire Kokontis, Timothy A. Klein, Sukrit Silas, Joseph Bondy-Denomy
{"title":"Multi-interface licensing of protein import into a phage nucleus","authors":"Claire Kokontis, Timothy A. Klein, Sukrit Silas, Joseph Bondy-Denomy","doi":"10.1038/s41586-024-08547-x","DOIUrl":null,"url":null,"abstract":"<p>Bacteriophages use diverse mechanisms to evade antiphage defence systems. ΦKZ-like jumbo phages assemble a proteinaceous, nucleus-like compartment that excludes antagonistic host nucleases and also internalizes DNA replication and transcription machinery<sup>1,2,3,4</sup>. The phage factors required for protein import and the mechanisms of selectivity remain unknown, however. Here we uncover an import system comprising proteins highly conserved across nucleus-forming phages, together with additional cargo-specific contributors. Using a genetic selection that forces the phage to decrease or abolish the import of specific proteins, we determine that the importation of five different phage nuclear-localized proteins requires distinct interfaces of the same factor, Imp1 (gp69). Imp1 localizes early to the nascent phage nucleus and forms discrete puncta in the mature phage nuclear periphery, probably in complex with direct interactor Imp6 (gp67), a conserved protein encoded in the same locus. The import of certain proteins, including a host topoisomerase, additionally requires Imp3 (gp59), a conserved factor necessary for proper Imp1 function. Three additional non-conserved phage proteins (Imp2 and Imp4/Imp5) are required for the import of two queried nuclear cargos (nuclear-localized protein 1 and host topoisomerase, respectively), perhaps acting as specific adaptors. We therefore propose a core import system that includes Imp1, Imp3 and Imp6, with multiple interfaces of Imp1 licensing transport through a protein lattice.</p>","PeriodicalId":18787,"journal":{"name":"Nature","volume":"40 1","pages":""},"PeriodicalIF":50.5000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41586-024-08547-x","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Bacteriophages use diverse mechanisms to evade antiphage defence systems. ΦKZ-like jumbo phages assemble a proteinaceous, nucleus-like compartment that excludes antagonistic host nucleases and also internalizes DNA replication and transcription machinery1,2,3,4. The phage factors required for protein import and the mechanisms of selectivity remain unknown, however. Here we uncover an import system comprising proteins highly conserved across nucleus-forming phages, together with additional cargo-specific contributors. Using a genetic selection that forces the phage to decrease or abolish the import of specific proteins, we determine that the importation of five different phage nuclear-localized proteins requires distinct interfaces of the same factor, Imp1 (gp69). Imp1 localizes early to the nascent phage nucleus and forms discrete puncta in the mature phage nuclear periphery, probably in complex with direct interactor Imp6 (gp67), a conserved protein encoded in the same locus. The import of certain proteins, including a host topoisomerase, additionally requires Imp3 (gp59), a conserved factor necessary for proper Imp1 function. Three additional non-conserved phage proteins (Imp2 and Imp4/Imp5) are required for the import of two queried nuclear cargos (nuclear-localized protein 1 and host topoisomerase, respectively), perhaps acting as specific adaptors. We therefore propose a core import system that includes Imp1, Imp3 and Imp6, with multiple interfaces of Imp1 licensing transport through a protein lattice.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature
Nature 综合性期刊-综合性期刊
CiteScore
90.00
自引率
1.20%
发文量
3652
审稿时长
3 months
期刊介绍: Nature is a prestigious international journal that publishes peer-reviewed research in various scientific and technological fields. The selection of articles is based on criteria such as originality, importance, interdisciplinary relevance, timeliness, accessibility, elegance, and surprising conclusions. In addition to showcasing significant scientific advances, Nature delivers rapid, authoritative, insightful news, and interpretation of current and upcoming trends impacting science, scientists, and the broader public. The journal serves a dual purpose: firstly, to promptly share noteworthy scientific advances and foster discussions among scientists, and secondly, to ensure the swift dissemination of scientific results globally, emphasizing their significance for knowledge, culture, and daily life.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信