Using remote sensing and machine learning to generate 100-cm soil moisture at 30-m resolution for the black soil region of China: Implication for agricultural water management

IF 5.9 1区 农林科学 Q1 AGRONOMY
Liwen Chen , Boting Hu , Jingxuan Sun , Y. Jun Xu , Guangxin Zhang , Hongbo Ma , Jingquan Ren
{"title":"Using remote sensing and machine learning to generate 100-cm soil moisture at 30-m resolution for the black soil region of China: Implication for agricultural water management","authors":"Liwen Chen ,&nbsp;Boting Hu ,&nbsp;Jingxuan Sun ,&nbsp;Y. Jun Xu ,&nbsp;Guangxin Zhang ,&nbsp;Hongbo Ma ,&nbsp;Jingquan Ren","doi":"10.1016/j.agwat.2025.109353","DOIUrl":null,"url":null,"abstract":"<div><div>Multi-layer soil moisture is an important factor in predicting agricultural droughts and waterlogging, with significant implications for the growth, development, and yield prediction of rain fed crops. However, soil moisture datasets or algorithms fail to simultaneously meet the requirements of multi-layer, high spatiotemporal resolution soil moisture information for large-scale agricultural production areas. To fill this gap, we propose a novel framework for estimation high spatial resolution multi-layer soil moisture data. Firstly, utilizing the Google Earth Engine (GEE) platform and Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model (ESTARFM), we achieve the fusion of multi-source remote sensing data at large scales to obtain high spatiotemporal resolution Normalized Difference Vegetation Index (NDVI) and Land Surface Temperature (LST) data. Secondly, leveraging the Extreme Gradient Boosting (XGBoost) model along with reanalysis and in-situ measurements, we estimate soil moisture information across depths of 0–100 cm depth by 10 cm interval over large geographical extents. Finally, the accuracy of the soil moisture model is assessed using metrics such as Pearson correlation coefficient, root mean square error (RMSE), unbiased RMSE (ubRMSE), and bias. To assess the applicability of our research methodology, we selected the typical black soil zone in Northeast of China, which is one of the four major black soil regions globally and characterized by intensive agricultural activities. We estimated the long-term time series of soil moisture information during the growing seasons from 2000 to 2020 in this study area. We found that the soil moisture simulation based on the XGBoost model the worst values of R, RMSE, ubRMSE, and Bias values for the training set are 0.86,1.49,1.49 and −0.039 respectively. For the validation set, the worst value of R is 0.83. The proposed methodology in this study enables the acquisition of soil moisture information with both large-scale coverage and high spatiotemporal resolution. This advancement holds significant promise for fine-scale research and applications in agricultural, hydrological, and environmental fields.</div></div>","PeriodicalId":7634,"journal":{"name":"Agricultural Water Management","volume":"309 ","pages":"Article 109353"},"PeriodicalIF":5.9000,"publicationDate":"2025-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agricultural Water Management","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378377425000678","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

Abstract

Multi-layer soil moisture is an important factor in predicting agricultural droughts and waterlogging, with significant implications for the growth, development, and yield prediction of rain fed crops. However, soil moisture datasets or algorithms fail to simultaneously meet the requirements of multi-layer, high spatiotemporal resolution soil moisture information for large-scale agricultural production areas. To fill this gap, we propose a novel framework for estimation high spatial resolution multi-layer soil moisture data. Firstly, utilizing the Google Earth Engine (GEE) platform and Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model (ESTARFM), we achieve the fusion of multi-source remote sensing data at large scales to obtain high spatiotemporal resolution Normalized Difference Vegetation Index (NDVI) and Land Surface Temperature (LST) data. Secondly, leveraging the Extreme Gradient Boosting (XGBoost) model along with reanalysis and in-situ measurements, we estimate soil moisture information across depths of 0–100 cm depth by 10 cm interval over large geographical extents. Finally, the accuracy of the soil moisture model is assessed using metrics such as Pearson correlation coefficient, root mean square error (RMSE), unbiased RMSE (ubRMSE), and bias. To assess the applicability of our research methodology, we selected the typical black soil zone in Northeast of China, which is one of the four major black soil regions globally and characterized by intensive agricultural activities. We estimated the long-term time series of soil moisture information during the growing seasons from 2000 to 2020 in this study area. We found that the soil moisture simulation based on the XGBoost model the worst values of R, RMSE, ubRMSE, and Bias values for the training set are 0.86,1.49,1.49 and −0.039 respectively. For the validation set, the worst value of R is 0.83. The proposed methodology in this study enables the acquisition of soil moisture information with both large-scale coverage and high spatiotemporal resolution. This advancement holds significant promise for fine-scale research and applications in agricultural, hydrological, and environmental fields.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Agricultural Water Management
Agricultural Water Management 农林科学-农艺学
CiteScore
12.10
自引率
14.90%
发文量
648
审稿时长
4.9 months
期刊介绍: Agricultural Water Management publishes papers of international significance relating to the science, economics, and policy of agricultural water management. In all cases, manuscripts must address implications and provide insight regarding agricultural water management.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信